Groups whose lattices of normal subgroups are~factorial
Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 239-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the groups $G$ for which the lattice of normal subgroups $\mathcal{N}(G)$ is factorial are exactly the UND-groups, that is the groups for which every normal subgroup have a unique normal complement, with finite length.
Keywords: lattice of normal subgroups, semilattices, idempotent monoids, partial monoids.
@article{ADM_2020_30_2_a7,
     author = {A. Rajhi},
     title = {Groups whose lattices of normal subgroups are~factorial},
     journal = {Algebra and discrete mathematics},
     pages = {239--253},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a7/}
}
TY  - JOUR
AU  - A. Rajhi
TI  - Groups whose lattices of normal subgroups are~factorial
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 239
EP  - 253
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a7/
LA  - en
ID  - ADM_2020_30_2_a7
ER  - 
%0 Journal Article
%A A. Rajhi
%T Groups whose lattices of normal subgroups are~factorial
%J Algebra and discrete mathematics
%D 2020
%P 239-253
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a7/
%G en
%F ADM_2020_30_2_a7
A. Rajhi. Groups whose lattices of normal subgroups are~factorial. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 239-253. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a7/

[1] J. Weigold, “On direct factor in groups”, J. London Math. Soc., 35 (1960), 310–320 | DOI | MR

[2] M. D. Miller, “On the lattice of normal subgroups of a direct product”, Pacific J. Math., 60:2 (1975) | DOI | MR | Zbl

[3] F. Wehrung, Refinement monoids, equidecomposability types, and Boolean inverse semigroups, Lecture Notes in Mathematics, 2188, Springer-Verlag, 2017 | DOI | MR | Zbl

[4] Thomas W. Hungerford, Algebra, Springer, New York, 1980 | MR | Zbl

[5] Hans Kurzweil and Bernd Stellmacher, The Theory of Finite Groups An Introduction, Springer, New York, 2004 | MR | Zbl

[6] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 1990 | MR | Zbl

[7] R. Schmidt, Subgroup lattices of groups, de Gruyter Expositions in Mathematics, 14, 1994 | MR | Zbl