Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_30_2_a7, author = {A. Rajhi}, title = {Groups whose lattices of normal subgroups are~factorial}, journal = {Algebra and discrete mathematics}, pages = {239--253}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a7/} }
A. Rajhi. Groups whose lattices of normal subgroups are~factorial. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 239-253. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a7/
[1] J. Weigold, “On direct factor in groups”, J. London Math. Soc., 35 (1960), 310–320 | DOI | MR
[2] M. D. Miller, “On the lattice of normal subgroups of a direct product”, Pacific J. Math., 60:2 (1975) | DOI | MR | Zbl
[3] F. Wehrung, Refinement monoids, equidecomposability types, and Boolean inverse semigroups, Lecture Notes in Mathematics, 2188, Springer-Verlag, 2017 | DOI | MR | Zbl
[4] Thomas W. Hungerford, Algebra, Springer, New York, 1980 | MR | Zbl
[5] Hans Kurzweil and Bernd Stellmacher, The Theory of Finite Groups An Introduction, Springer, New York, 2004 | MR | Zbl
[6] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 1990 | MR | Zbl
[7] R. Schmidt, Subgroup lattices of groups, de Gruyter Expositions in Mathematics, 14, 1994 | MR | Zbl