Some remarks about minimal prime ideals of~skew Poincar\'e-Birkhoff-Witt extensions
Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 207-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we characterize the minimal prime ideals of skew PBW extensions over several classes of rings. We unify different results established in the literature for Ore extensions, and extend all of them to a several families of noncommutative rings of polynomial type which cannot be expressed as these extensions.
Keywords: minimal prime ideal, 2-primal ring, skew PBW extension.
@article{ADM_2020_30_2_a4,
     author = {A. Ni\~no and A. Reyes},
     title = {Some remarks about minimal prime ideals of~skew {Poincar\'e-Birkhoff-Witt} extensions},
     journal = {Algebra and discrete mathematics},
     pages = {207--229},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a4/}
}
TY  - JOUR
AU  - A. Niño
AU  - A. Reyes
TI  - Some remarks about minimal prime ideals of~skew Poincar\'e-Birkhoff-Witt extensions
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 207
EP  - 229
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a4/
LA  - en
ID  - ADM_2020_30_2_a4
ER  - 
%0 Journal Article
%A A. Niño
%A A. Reyes
%T Some remarks about minimal prime ideals of~skew Poincar\'e-Birkhoff-Witt extensions
%J Algebra and discrete mathematics
%D 2020
%P 207-229
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a4/
%G en
%F ADM_2020_30_2_a4
A. Niño; A. Reyes. Some remarks about minimal prime ideals of~skew Poincar\'e-Birkhoff-Witt extensions. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 207-229. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a4/

[1] J. P. Acosta, O. Lezama, “Universal property of skew PBW extensions”, Algebra Discrete Math., 20:1 (2015), 1–12 | MR | Zbl

[2] V. A. Artamonov, “Derivations of skew PBW extensions”, Commun. Math. Stat., 3:4 (2015), 449–457 | DOI | MR | Zbl

[3] J. Apel, Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung, Gröbner bases in noncommutative algebras and their applications, Karl-Marx-Univ., Leipzig, 1988 | Zbl

[4] A. D. Bell, K. Goodearl, “Uniform rank over differential operator rings and Poincaré–Birkhoff–Witt extensions”, Pacific J. Math., 131:11 (1988), 13–37 | DOI | MR | Zbl

[5] V. K. Bhat, “Ore Extensions over Weak $\sigma$-rigid Rings and $\sigma(*)$-rings”, Eur. J. Pure Appl. Math., 3:4 (2010), 695–703 | MR | Zbl

[6] V. K. Bhat, “Skew Polynomial Rings over Weak $\sigma$-rigid Rings and $\sigma(*)$-rings”, Eur. J. Pure Appl. Math., 6:1 (2013), 59–65 | MR | Zbl

[7] V. K. Bhat, “Minimal prime ideals of $\sigma(*)$-rings and their extensions”, Armen. J. Math., 5:2 (2013), 98–104 | MR | Zbl

[8] V. K. Bhat, “On 2-primal Ore extensions over Noetherian Weak $\sigma$-rigid rings”, Stiinte Repub. Mold. Mat., 2:75 (2014), 51–59 | MR | Zbl

[9] G. F. Birkenmeier, H. E. Heatherly, E. K. Lee, “Completely prime ideals and associated radicals”, Ring Theory, eds. S. K. Jain and S. T. Rizvi, World Scientific, Singapore, 1993, 102–129 | MR | Zbl

[10] W. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, H. Venegas, Skew PBW Extensions, Ring and Module-theoretic Properties, Matrix and Gröbner Methods, and Applications, Algebra and Applications, 28, Springer, 2020 | DOI | Zbl

[11] M. Ferrero, K. Kishimoto, “On differential rings and skew polynomials”, Comm. Algebra, 13:2 (1985), 285–304 | DOI | MR | Zbl

[12] P. Gabriel, “Representations des Algebres de Lie Resoulubles”, Seminaire Bourbaki 1968–69, Lecture Notes in Math., 179, Springer-Verlag, Berlin, 1971, 1–22 | DOI | MR

[13] C. Gallego, O. Lezama, “Gröbner bases for ideals of $\sigma$-PBW extensions”, Comm. Algebra, 39:1 (2011), 50–75 | DOI | MR | Zbl

[14] C. Gallego, O. Lezama, “Matrix approach to noncommutative stably free modules and Hermite rings”, Algebra Discrete Math., 18:1 (2014), 109–137 | MR | Zbl

[15] K. R. Goodearl, E. S. Letzter, Prime ideals in skew and $q$-skew polynomial rings, Memoirs of Amer. Math. Soc., 521, 1994 | MR | Zbl

[16] K. R. Goodearl, R. B. Jr. Warfield, An Introduction to Noncommutative Noetherian Rings, 2nd. ed., Cambridge University Press, 2004 | MR | Zbl

[17] M. Hamidizadeh, E. Hashemi, A. Reyes, “A classification of ring elements in skew PBW extensions over compatible rings”, Int. Electron. J. Algebra, 28 (2020), 75–97 | DOI | MR | Zbl

[18] E. Hashemi, K. Khalilnezhad, A. Alhevaz, “A $(\Sigma,\Delta)$-Compatible Skew PBW Extension Ring”, Kyungpook Math. J., 57:3 (2017), 401–417 | MR | Zbl

[19] E. Hashemi, K. Khalilnezhad, A. Alhevaz, “Extensions of rings over 2-primal rings”, Matematiche (Catania), 74:1 (2019), 141–162 | MR | Zbl

[20] E. Hashemi, K. Khalilnezhad, M. Ghadiri, “Baer and quasi-Baer properties of skew PBW extensions”, J. Algebr. Syst., 7:1 (2019), 1–24 | MR

[21] J. Hernández, A. Reyes, “A Survey on Some Algebraic Characterizations of Hilbert's Nullstellensatz for Non-commutative Rings of Polynomial Type”, Ingeniería y Ciencia, 16:31 (2020), 27–52 | DOI

[22] C. Y. Hong, N. K. Kim, T. K. Kwak, “Ore extensions of Baer and p.p.-rings”, J. Pure Appl. Algebra, 151:3 (2000), 215–226 | DOI | MR | Zbl

[23] A. P. Isaev, P. N. Pyatov, V. Rittenberg, “Diffusion algebras”, J. Phys. A., 34:29 (2001), 5815–5834 | DOI | MR | Zbl

[24] H. Jiménez, O. Lezama, “Gröbner bases of modules over $\sigma$-PBW extensions”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 32 (2016), 39–66 | MR

[25] A. Kandri-Rody, V. Weispfenning, “Non-commutative Gröbner Bases in Algebras of Solvable Type”, J. Symbolic Computation, 9:1 (1990), 1–26 | DOI | MR | Zbl

[26] N. K. Kim, T. K. Kwak, “Minimal prime ideals in 2-primal rings”, Math. Japon, 50:3 (1999), 415–420 | MR | Zbl

[27] J. Krempa, “Some examples of reduced rings”, Algebra Colloq., 3:4 (1996), 289–300 | MR | Zbl

[28] T. K. Kwak, “Prime radicals of skew polynomial rings”, Int. J. Math. Sci., 2:2 (2003), 219–227 | MR | Zbl

[29] O. Lezama, “Computation of point modules of finitely semi-graded rings”, Comm. Algebra, 48:2 (2020), 866–878 | DOI | MR | Zbl

[30] O. Lezama, J. P. Acosta, A. Reyes, “Prime ideals of skew PBW extensions”, Rev. Un. Mat. Argentina, 56:2 (2015), 39–55 | MR | Zbl

[31] O. Lezama, C. Gallego, “$d$-Hermite rings and skew PBW extensions”, São Paulo J. Math. Sci., 10:1 (2016), 60–72 | DOI | MR | Zbl

[32] O. Lezama, J. Gómez, “Koszulity and point modules of finitely semi-graded rings and algebras”, Symmetry, 11:7 (2019), 1–22 | DOI | MR

[33] O. Lezama, E. Latorre, “Non-commutative algebraic geometry of semi-graded rings”, Internat. J. Algebra Comput., 27:4 (2017), 361–389 | DOI | MR | Zbl

[34] O. Lezama, A. Reyes, “Some Homological Properties of Skew PBW Extensions”, Comm. Algebra, 42:3 (2014), 1200–1230 | DOI | MR | Zbl

[35] O. Lezama, H. Venegas, “Center of skew PBW extensions”, Internat. J. Algebra Comput., 30:8 (2020), 1625–1650 | DOI | MR | Zbl

[36] M. Louzari, A. Reyes, “Generalized Rigid Modules and Their Polynomial Extensions”, Associative and Non-Associative Algebras and Applications, MAMAA 2018, Springer Proceedings in Mathematics Statistics, 311, eds. Siles Molina M., El Kaoutit L., Louzari M., Ben Yakoub L., Benslimane M., Springer, Cham, 2020, 147–158 | DOI | Zbl

[37] M. Louzari, A. Reyes, “Minimal prime ideals of skew PBW extensions over 2-primal compatible rings”, Rev. Colombiana Mat., 54:1 (2020), 39–63 | DOI | MR | Zbl

[38] G. Marks, “Skew polynomial rings over 2-primal rings”, Comm. Algebra, 27:9 (1999), 4411–4423 | DOI | MR | Zbl

[39] G. Marks, “On 2-primal Ore extensions”, Comm. Algebra, 29:5 (2001), 2113–2123 | DOI | MR | Zbl

[40] G. Marks, “A taxonomy of 2-primal rings”, J. Algebra, 266:2 (2003), 494–520 | DOI | MR | Zbl

[41] J. C. McConnell, J. C. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics, AMS, 2001 | DOI | MR | Zbl

[42] A. Niño, M. C. Ramírez, A. Reyes, “Associated prime ideals over skew PBW extensions”, Comm. Algebra, 48:12 (2020), 5038–5055 | DOI | MR | Zbl

[43] A. Niño, A. Reyes, “Some ring theoretical properties of skew Poincaré–Birkhoff–Witt extensions”, Bol. Mat., 24:2 (2017), 131–148 | MR

[44] O. Ore, “Theory of Non-Commutative Polynomials”, Ann. of Math. (2), 34:3 (1933), 480–508 | DOI | MR | Zbl

[45] L. Ouyang, “Extensions of generalized $\alpha$-rigid rings”, International Electronic Journal of Algebra, 3 (2008), 103–116 | MR | Zbl

[46] A. Polishchuk, L. Positselski, Quadratic algebras, University Lecture Series, 37, American Mathematical Society, Providence, RI, 2005 | DOI | MR | Zbl

[47] A. Reyes, “Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings”, Rev. Integr. Temas Mat., 33:2 (2015), 173–189 | DOI | MR | Zbl

[48] A. Reyes, “Armendariz modules over skew PBW extensions”, Comm. Algebra, 47:3 (2019), 1248–1270 | DOI | MR | Zbl

[49] A. Reyes, C. Rodríguez, “The McCoy condition on Skew Poincaré–Birkhoff–Witt Extensions”, Commun. Math. Stat., 2019 | DOI | MR

[50] A. Reyes, H. Suárez, “A note on zip and reversible skew PBW extensions”, Bol. Mat., 23:1 (2016), 71–79 | MR

[51] A. Reyes, H. Suárez, “Enveloping Algebra and Skew Calabi-Yau algebras over Skew Poincaré–Birkhoff–Witt Extensions”, Far East J. Math. Sci., 102:2 (2017), 373–397 | Zbl

[52] A. Reyes, H. Suárez, “$\sigma$-PBW Extensions of Skew Armendariz Rings”, Adv. Appl. Clifford Algebr., 27:4 (2017), 3197–3224 | DOI | MR | Zbl

[53] A. Reyes, H. Suárez, “A notion of compatibility for Armendariz and Baer properties over skew PBW extensions”, Rev. Un. Mat. Argentina, 59:1 (2018), 157–178 | MR | Zbl

[54] A. Reyes, H. Suárez, “Skew Poincaré-Birkhoff-Witt extensions over weak $\Sigma$-rigid rings”, Far East J. Math. Sci., 106:2 (2018), 421–440 | MR

[55] A. Reyes, H. Suárez, “Skew Poincaré–Birkhoff–Witt extensions over weak zip rings”, Beitr. Algebra Geom., 60:2 (2019), 190–216 | DOI | MR

[56] A. Reyes, H. Suárez, “Radicals and Köthe's conjecture for skew PBW extensions”, Commun. Math. Stat., 2019 | DOI

[57] A. Reyes, H. Suárez, “Skew Poincaré–Birkhoff–Witt extensions over weak compatible rings”, J. Algebra Appl., 19:12 (2020), 2050225-1–2050225-21 | DOI | MR

[58] A. Reyes, Y. Suárez, “On the ACCP in skew Poincaré–Birkhoff–Witt extensions”, Beitr. Algebra Geom., 59:4 (2018), 625–643 | DOI | MR | Zbl

[59] A. Rosenberg, Non-commutative Algebraic Geometry and Representations of Quantized Algebras, Mathematics and Its Applications, 330, Kluwer Academic Publishers, 1995 | MR

[60] G. Y. Shin, “Prime ideals and sheaf representation of a pseudo symmetric rings”, Trans. Amer. Math. Soc., 184 (1973), 43–60 | DOI | MR

[61] A. B. Tumwesigye, J. Richter, S. Silvestrov, “Centralizers in PBW Extensions”, Algebraic Structures and Applications, SPAS 2017, Springer Proceedings in Mathematics Statistics, 317, eds. Silvestrov S., Malyarenko A., Rancić M., Springer, Cham, 2020 | MR

[62] B. A. Zambrano, “Poisson brackets on some skew PBW extensions”, Algebra Discrete Math., 29:2 (2020), 277–302 | DOI | MR | Zbl