Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_30_2_a4, author = {A. Ni\~no and A. Reyes}, title = {Some remarks about minimal prime ideals of~skew {Poincar\'e-Birkhoff-Witt} extensions}, journal = {Algebra and discrete mathematics}, pages = {207--229}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a4/} }
TY - JOUR AU - A. Niño AU - A. Reyes TI - Some remarks about minimal prime ideals of~skew Poincar\'e-Birkhoff-Witt extensions JO - Algebra and discrete mathematics PY - 2020 SP - 207 EP - 229 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a4/ LA - en ID - ADM_2020_30_2_a4 ER -
A. Niño; A. Reyes. Some remarks about minimal prime ideals of~skew Poincar\'e-Birkhoff-Witt extensions. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 207-229. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a4/
[1] J. P. Acosta, O. Lezama, “Universal property of skew PBW extensions”, Algebra Discrete Math., 20:1 (2015), 1–12 | MR | Zbl
[2] V. A. Artamonov, “Derivations of skew PBW extensions”, Commun. Math. Stat., 3:4 (2015), 449–457 | DOI | MR | Zbl
[3] J. Apel, Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung, Gröbner bases in noncommutative algebras and their applications, Karl-Marx-Univ., Leipzig, 1988 | Zbl
[4] A. D. Bell, K. Goodearl, “Uniform rank over differential operator rings and Poincaré–Birkhoff–Witt extensions”, Pacific J. Math., 131:11 (1988), 13–37 | DOI | MR | Zbl
[5] V. K. Bhat, “Ore Extensions over Weak $\sigma$-rigid Rings and $\sigma(*)$-rings”, Eur. J. Pure Appl. Math., 3:4 (2010), 695–703 | MR | Zbl
[6] V. K. Bhat, “Skew Polynomial Rings over Weak $\sigma$-rigid Rings and $\sigma(*)$-rings”, Eur. J. Pure Appl. Math., 6:1 (2013), 59–65 | MR | Zbl
[7] V. K. Bhat, “Minimal prime ideals of $\sigma(*)$-rings and their extensions”, Armen. J. Math., 5:2 (2013), 98–104 | MR | Zbl
[8] V. K. Bhat, “On 2-primal Ore extensions over Noetherian Weak $\sigma$-rigid rings”, Stiinte Repub. Mold. Mat., 2:75 (2014), 51–59 | MR | Zbl
[9] G. F. Birkenmeier, H. E. Heatherly, E. K. Lee, “Completely prime ideals and associated radicals”, Ring Theory, eds. S. K. Jain and S. T. Rizvi, World Scientific, Singapore, 1993, 102–129 | MR | Zbl
[10] W. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, H. Venegas, Skew PBW Extensions, Ring and Module-theoretic Properties, Matrix and Gröbner Methods, and Applications, Algebra and Applications, 28, Springer, 2020 | DOI | Zbl
[11] M. Ferrero, K. Kishimoto, “On differential rings and skew polynomials”, Comm. Algebra, 13:2 (1985), 285–304 | DOI | MR | Zbl
[12] P. Gabriel, “Representations des Algebres de Lie Resoulubles”, Seminaire Bourbaki 1968–69, Lecture Notes in Math., 179, Springer-Verlag, Berlin, 1971, 1–22 | DOI | MR
[13] C. Gallego, O. Lezama, “Gröbner bases for ideals of $\sigma$-PBW extensions”, Comm. Algebra, 39:1 (2011), 50–75 | DOI | MR | Zbl
[14] C. Gallego, O. Lezama, “Matrix approach to noncommutative stably free modules and Hermite rings”, Algebra Discrete Math., 18:1 (2014), 109–137 | MR | Zbl
[15] K. R. Goodearl, E. S. Letzter, Prime ideals in skew and $q$-skew polynomial rings, Memoirs of Amer. Math. Soc., 521, 1994 | MR | Zbl
[16] K. R. Goodearl, R. B. Jr. Warfield, An Introduction to Noncommutative Noetherian Rings, 2nd. ed., Cambridge University Press, 2004 | MR | Zbl
[17] M. Hamidizadeh, E. Hashemi, A. Reyes, “A classification of ring elements in skew PBW extensions over compatible rings”, Int. Electron. J. Algebra, 28 (2020), 75–97 | DOI | MR | Zbl
[18] E. Hashemi, K. Khalilnezhad, A. Alhevaz, “A $(\Sigma,\Delta)$-Compatible Skew PBW Extension Ring”, Kyungpook Math. J., 57:3 (2017), 401–417 | MR | Zbl
[19] E. Hashemi, K. Khalilnezhad, A. Alhevaz, “Extensions of rings over 2-primal rings”, Matematiche (Catania), 74:1 (2019), 141–162 | MR | Zbl
[20] E. Hashemi, K. Khalilnezhad, M. Ghadiri, “Baer and quasi-Baer properties of skew PBW extensions”, J. Algebr. Syst., 7:1 (2019), 1–24 | MR
[21] J. Hernández, A. Reyes, “A Survey on Some Algebraic Characterizations of Hilbert's Nullstellensatz for Non-commutative Rings of Polynomial Type”, Ingeniería y Ciencia, 16:31 (2020), 27–52 | DOI
[22] C. Y. Hong, N. K. Kim, T. K. Kwak, “Ore extensions of Baer and p.p.-rings”, J. Pure Appl. Algebra, 151:3 (2000), 215–226 | DOI | MR | Zbl
[23] A. P. Isaev, P. N. Pyatov, V. Rittenberg, “Diffusion algebras”, J. Phys. A., 34:29 (2001), 5815–5834 | DOI | MR | Zbl
[24] H. Jiménez, O. Lezama, “Gröbner bases of modules over $\sigma$-PBW extensions”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 32 (2016), 39–66 | MR
[25] A. Kandri-Rody, V. Weispfenning, “Non-commutative Gröbner Bases in Algebras of Solvable Type”, J. Symbolic Computation, 9:1 (1990), 1–26 | DOI | MR | Zbl
[26] N. K. Kim, T. K. Kwak, “Minimal prime ideals in 2-primal rings”, Math. Japon, 50:3 (1999), 415–420 | MR | Zbl
[27] J. Krempa, “Some examples of reduced rings”, Algebra Colloq., 3:4 (1996), 289–300 | MR | Zbl
[28] T. K. Kwak, “Prime radicals of skew polynomial rings”, Int. J. Math. Sci., 2:2 (2003), 219–227 | MR | Zbl
[29] O. Lezama, “Computation of point modules of finitely semi-graded rings”, Comm. Algebra, 48:2 (2020), 866–878 | DOI | MR | Zbl
[30] O. Lezama, J. P. Acosta, A. Reyes, “Prime ideals of skew PBW extensions”, Rev. Un. Mat. Argentina, 56:2 (2015), 39–55 | MR | Zbl
[31] O. Lezama, C. Gallego, “$d$-Hermite rings and skew PBW extensions”, São Paulo J. Math. Sci., 10:1 (2016), 60–72 | DOI | MR | Zbl
[32] O. Lezama, J. Gómez, “Koszulity and point modules of finitely semi-graded rings and algebras”, Symmetry, 11:7 (2019), 1–22 | DOI | MR
[33] O. Lezama, E. Latorre, “Non-commutative algebraic geometry of semi-graded rings”, Internat. J. Algebra Comput., 27:4 (2017), 361–389 | DOI | MR | Zbl
[34] O. Lezama, A. Reyes, “Some Homological Properties of Skew PBW Extensions”, Comm. Algebra, 42:3 (2014), 1200–1230 | DOI | MR | Zbl
[35] O. Lezama, H. Venegas, “Center of skew PBW extensions”, Internat. J. Algebra Comput., 30:8 (2020), 1625–1650 | DOI | MR | Zbl
[36] M. Louzari, A. Reyes, “Generalized Rigid Modules and Their Polynomial Extensions”, Associative and Non-Associative Algebras and Applications, MAMAA 2018, Springer Proceedings in Mathematics Statistics, 311, eds. Siles Molina M., El Kaoutit L., Louzari M., Ben Yakoub L., Benslimane M., Springer, Cham, 2020, 147–158 | DOI | Zbl
[37] M. Louzari, A. Reyes, “Minimal prime ideals of skew PBW extensions over 2-primal compatible rings”, Rev. Colombiana Mat., 54:1 (2020), 39–63 | DOI | MR | Zbl
[38] G. Marks, “Skew polynomial rings over 2-primal rings”, Comm. Algebra, 27:9 (1999), 4411–4423 | DOI | MR | Zbl
[39] G. Marks, “On 2-primal Ore extensions”, Comm. Algebra, 29:5 (2001), 2113–2123 | DOI | MR | Zbl
[40] G. Marks, “A taxonomy of 2-primal rings”, J. Algebra, 266:2 (2003), 494–520 | DOI | MR | Zbl
[41] J. C. McConnell, J. C. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics, AMS, 2001 | DOI | MR | Zbl
[42] A. Niño, M. C. Ramírez, A. Reyes, “Associated prime ideals over skew PBW extensions”, Comm. Algebra, 48:12 (2020), 5038–5055 | DOI | MR | Zbl
[43] A. Niño, A. Reyes, “Some ring theoretical properties of skew Poincaré–Birkhoff–Witt extensions”, Bol. Mat., 24:2 (2017), 131–148 | MR
[44] O. Ore, “Theory of Non-Commutative Polynomials”, Ann. of Math. (2), 34:3 (1933), 480–508 | DOI | MR | Zbl
[45] L. Ouyang, “Extensions of generalized $\alpha$-rigid rings”, International Electronic Journal of Algebra, 3 (2008), 103–116 | MR | Zbl
[46] A. Polishchuk, L. Positselski, Quadratic algebras, University Lecture Series, 37, American Mathematical Society, Providence, RI, 2005 | DOI | MR | Zbl
[47] A. Reyes, “Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings”, Rev. Integr. Temas Mat., 33:2 (2015), 173–189 | DOI | MR | Zbl
[48] A. Reyes, “Armendariz modules over skew PBW extensions”, Comm. Algebra, 47:3 (2019), 1248–1270 | DOI | MR | Zbl
[49] A. Reyes, C. Rodríguez, “The McCoy condition on Skew Poincaré–Birkhoff–Witt Extensions”, Commun. Math. Stat., 2019 | DOI | MR
[50] A. Reyes, H. Suárez, “A note on zip and reversible skew PBW extensions”, Bol. Mat., 23:1 (2016), 71–79 | MR
[51] A. Reyes, H. Suárez, “Enveloping Algebra and Skew Calabi-Yau algebras over Skew Poincaré–Birkhoff–Witt Extensions”, Far East J. Math. Sci., 102:2 (2017), 373–397 | Zbl
[52] A. Reyes, H. Suárez, “$\sigma$-PBW Extensions of Skew Armendariz Rings”, Adv. Appl. Clifford Algebr., 27:4 (2017), 3197–3224 | DOI | MR | Zbl
[53] A. Reyes, H. Suárez, “A notion of compatibility for Armendariz and Baer properties over skew PBW extensions”, Rev. Un. Mat. Argentina, 59:1 (2018), 157–178 | MR | Zbl
[54] A. Reyes, H. Suárez, “Skew Poincaré-Birkhoff-Witt extensions over weak $\Sigma$-rigid rings”, Far East J. Math. Sci., 106:2 (2018), 421–440 | MR
[55] A. Reyes, H. Suárez, “Skew Poincaré–Birkhoff–Witt extensions over weak zip rings”, Beitr. Algebra Geom., 60:2 (2019), 190–216 | DOI | MR
[56] A. Reyes, H. Suárez, “Radicals and Köthe's conjecture for skew PBW extensions”, Commun. Math. Stat., 2019 | DOI
[57] A. Reyes, H. Suárez, “Skew Poincaré–Birkhoff–Witt extensions over weak compatible rings”, J. Algebra Appl., 19:12 (2020), 2050225-1–2050225-21 | DOI | MR
[58] A. Reyes, Y. Suárez, “On the ACCP in skew Poincaré–Birkhoff–Witt extensions”, Beitr. Algebra Geom., 59:4 (2018), 625–643 | DOI | MR | Zbl
[59] A. Rosenberg, Non-commutative Algebraic Geometry and Representations of Quantized Algebras, Mathematics and Its Applications, 330, Kluwer Academic Publishers, 1995 | MR
[60] G. Y. Shin, “Prime ideals and sheaf representation of a pseudo symmetric rings”, Trans. Amer. Math. Soc., 184 (1973), 43–60 | DOI | MR
[61] A. B. Tumwesigye, J. Richter, S. Silvestrov, “Centralizers in PBW Extensions”, Algebraic Structures and Applications, SPAS 2017, Springer Proceedings in Mathematics Statistics, 317, eds. Silvestrov S., Malyarenko A., Rancić M., Springer, Cham, 2020 | MR
[62] B. A. Zambrano, “Poisson brackets on some skew PBW extensions”, Algebra Discrete Math., 29:2 (2020), 277–302 | DOI | MR | Zbl