$F$-supplemented modules
Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 83-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring, let $M$ be a left $R$-module, and let $U, V, F$ be submodules of $M$ with $F$ proper. We call $V$ an $F$-supplement of $U$ in $M$ if $V$ is minimal in the set $ F \subseteq X \subseteq M$ such that $U + X = M$, or equivalently, $F\subseteq V$, $U + V = M$ and $U \cap V$ is $F$-small in $V$. If every submodule of $M$ has an $F$-supplement, then we call $M$ an $F$-supplemented module. In this paper, we introduce and investigate $F$-supplement submodules and (amply) $F$-supplemented modules. We give some properties of these modules, and characterize finitely generated (amply) $F$-supplemented modules in terms of their certain submodules.
Keywords: $F$-supplement and $F$-small submodules, $F$-supplemented, $F$-local and $F$-hollow modules.
@article{ADM_2020_30_1_a7,
     author = {S. \"Ozdemir},
     title = {$F$-supplemented modules},
     journal = {Algebra and discrete mathematics},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a7/}
}
TY  - JOUR
AU  - S. Özdemir
TI  - $F$-supplemented modules
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 83
EP  - 96
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a7/
LA  - en
ID  - ADM_2020_30_1_a7
ER  - 
%0 Journal Article
%A S. Özdemir
%T $F$-supplemented modules
%J Algebra and discrete mathematics
%D 2020
%P 83-96
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a7/
%G en
%F ADM_2020_30_1_a7
S. Özdemir. $F$-supplemented modules. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 83-96. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a7/

[1] M. D. Cissé, D. Sow, “On generalizations of essential and small submodules”, Southeast Asian Bull. Math., 41 (2017), 369–383 | MR | Zbl

[2] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules, Birkhäuser Verlag, 2006 | MR | Zbl

[3] Fr. Kasch, E. A. Mares, “Eine Kennzeichnung semi-perfekter Moduln”, Nagoya Math. J., 27 (1966), 525–529 | DOI | MR | Zbl

[4] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991 | MR | Zbl

[5] D. X. Zhou, X. R. Zhang, “Small-Essential Submodules and Morita Duality”, Southeast Asian Bull. Math., 35 (2011), 1051–1062 | MR | Zbl

[6] Y. Zhou, “Generalizations of Perfect, Semiperfect, and Semiregular Rings”, Algebra Colloquium, 7 (2000), 305–318 | DOI | MR | Zbl