Normal high order elements in finite field extensions based on the cyclotomic polynomials
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 241-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider elements which are both of high multiplicative order and normal in extensions $F_{q^{m} } $ of the field $F_{q} $. If the extension is defined by a cyclotomic polynomial, we construct such elements explicitly and give explicit lower bounds on their orders.
Keywords: finite field, normal basis, high multiplicative order element.
Mots-clés : cyclotomic polynomial
@article{ADM_2020_29_2_a8,
     author = {R. Popovych and R. Skuratovskii},
     title = {Normal high order elements in finite field extensions based on the cyclotomic polynomials},
     journal = {Algebra and discrete mathematics},
     pages = {241--248},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a8/}
}
TY  - JOUR
AU  - R. Popovych
AU  - R. Skuratovskii
TI  - Normal high order elements in finite field extensions based on the cyclotomic polynomials
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 241
EP  - 248
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a8/
LA  - en
ID  - ADM_2020_29_2_a8
ER  - 
%0 Journal Article
%A R. Popovych
%A R. Skuratovskii
%T Normal high order elements in finite field extensions based on the cyclotomic polynomials
%J Algebra and discrete mathematics
%D 2020
%P 241-248
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a8/
%G en
%F ADM_2020_29_2_a8
R. Popovych; R. Skuratovskii. Normal high order elements in finite field extensions based on the cyclotomic polynomials. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 241-248. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a8/

[1] Ahmadi O., Shparlinski I. E., Voloch J. F., “Multiplicative order of Gauss periods”, Int. J. Number Theory, 6:4 (2010), 877–882 | DOI | MR | Zbl

[2] Gathen J., Shparlinski I. E., “Orders of Gauss periods in finite fields”, Appl. Algebra Engrg. Comm. Comput., 9:1 (1998), 15–24 | DOI | MR | Zbl

[3] Huczynska S., Mullen G. L., Panario D., Thomson D., “Existence and properties of $k$-normal elements over finite fields”, Finite Fields Appl., 24 (2013), 170–183 | DOI | MR | Zbl

[4] Jungnickel D., “On the order of a product in a finite abelian group”, Math. Magazine, 69:1 (1996), 53–57 | DOI | MR | Zbl

[5] Lidl R., Niederreiter H., Finite Fields, Cambridge University Press, Cambridge, 1997, 755 pp. | MR

[6] Mullen G. L., Panario D., Handbook of finite fields, CRC Press, Boca Raton, 2013, 1068 pp. | MR | Zbl

[7] Popovych R., “Elements of high order in finite fields of the form”, Finite Fields Appl., 18:4 (2012), 700–710 | DOI | MR | Zbl

[8] Popovych R., “Sharpening of explicit lower bounds on elements order for finite field extensions based on cyclotomic polynomials”, Ukr. Math. J., 66:6 (2014), 815–825 | DOI | MR | Zbl

[9] Skuratovskii R. V., “Constructing of finite field normal basis in deterministic polynomial time”, Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, 1 (2011), 49–54 (Ukrainian)