Norm of Gaussian integers in arithmetical progressions and narrow sectors
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 259-270
Cet article a éte moissonné depuis la source Math-Net.Ru
We proved the equidistribution of the Gaussian integer numbers in narrow sectors of the circle of radius $x^{\frac{1}{2}}$, $x\to\infty$, with the norms belonging to arithmetic progression $N(\alpha)\equiv\ell\pmod{q}$ with the common difference of an arithmetic progression $q$, $q\ll{x}^{\frac{2}{3}-\varepsilon}$.
Keywords:
Gaussian integers, norm groups, Hecke $Z$-function, functional equation.
@article{ADM_2020_29_2_a10,
author = {S. Varbanets and Ya. Vorobyov},
title = {Norm of {Gaussian} integers in arithmetical progressions and narrow sectors},
journal = {Algebra and discrete mathematics},
pages = {259--270},
year = {2020},
volume = {29},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a10/}
}
S. Varbanets; Ya. Vorobyov. Norm of Gaussian integers in arithmetical progressions and narrow sectors. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 259-270. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a10/
[1] Iwaniec H., Kowalski E., Analytic Number Theory, Colloquium Publications, 53, American Mathematical Society, Providence, 2004 | DOI | MR | Zbl
[2] Liu K., Shparlinski I.E., Zhang T., “Divisor problem in arithmetic progressions modulo a prime power”, Advances in Mathematics, 325:5 (2018), 459–481 | DOI | MR | Zbl
[3] Varbanets S., “Exponential sums on the sequences of inversive congruential pseudorandom numbers”, Siauliai Math. Semin., 3:11 (2008), 247–261 | MR | Zbl
[4] Vinogradov I.M., Izbrannye trudy, Selected works, Izdat. Akad. Nauk SSSR, Moscow, 1952 (Russian) | MR | Zbl