Norm of Gaussian integers in arithmetical progressions and narrow sectors
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 259-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

We proved the equidistribution of the Gaussian integer numbers in narrow sectors of the circle of radius $x^{\frac{1}{2}}$, $x\to\infty$, with the norms belonging to arithmetic progression $N(\alpha)\equiv\ell\pmod{q}$ with the common difference of an arithmetic progression $q$, $q\ll{x}^{\frac{2}{3}-\varepsilon}$.
Keywords: Gaussian integers, norm groups, Hecke $Z$-function, functional equation.
@article{ADM_2020_29_2_a10,
     author = {S. Varbanets and Ya. Vorobyov},
     title = {Norm of {Gaussian} integers in arithmetical progressions and narrow sectors},
     journal = {Algebra and discrete mathematics},
     pages = {259--270},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a10/}
}
TY  - JOUR
AU  - S. Varbanets
AU  - Ya. Vorobyov
TI  - Norm of Gaussian integers in arithmetical progressions and narrow sectors
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 259
EP  - 270
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a10/
LA  - en
ID  - ADM_2020_29_2_a10
ER  - 
%0 Journal Article
%A S. Varbanets
%A Ya. Vorobyov
%T Norm of Gaussian integers in arithmetical progressions and narrow sectors
%J Algebra and discrete mathematics
%D 2020
%P 259-270
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a10/
%G en
%F ADM_2020_29_2_a10
S. Varbanets; Ya. Vorobyov. Norm of Gaussian integers in arithmetical progressions and narrow sectors. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 259-270. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a10/

[1] Iwaniec H., Kowalski E., Analytic Number Theory, Colloquium Publications, 53, American Mathematical Society, Providence, 2004 | DOI | MR | Zbl

[2] Liu K., Shparlinski I.E., Zhang T., “Divisor problem in arithmetic progressions modulo a prime power”, Advances in Mathematics, 325:5 (2018), 459–481 | DOI | MR | Zbl

[3] Varbanets S., “Exponential sums on the sequences of inversive congruential pseudorandom numbers”, Siauliai Math. Semin., 3:11 (2008), 247–261 | MR | Zbl

[4] Vinogradov I.M., Izbrannye trudy, Selected works, Izdat. Akad. Nauk SSSR, Moscow, 1952 (Russian) | MR | Zbl