Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_29_2_a10, author = {S. Varbanets and Ya. Vorobyov}, title = {Norm of {Gaussian} integers in arithmetical progressions and narrow sectors}, journal = {Algebra and discrete mathematics}, pages = {259--270}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a10/} }
TY - JOUR AU - S. Varbanets AU - Ya. Vorobyov TI - Norm of Gaussian integers in arithmetical progressions and narrow sectors JO - Algebra and discrete mathematics PY - 2020 SP - 259 EP - 270 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a10/ LA - en ID - ADM_2020_29_2_a10 ER -
S. Varbanets; Ya. Vorobyov. Norm of Gaussian integers in arithmetical progressions and narrow sectors. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 259-270. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a10/
[1] Iwaniec H., Kowalski E., Analytic Number Theory, Colloquium Publications, 53, American Mathematical Society, Providence, 2004 | DOI | MR | Zbl
[2] Liu K., Shparlinski I.E., Zhang T., “Divisor problem in arithmetic progressions modulo a prime power”, Advances in Mathematics, 325:5 (2018), 459–481 | DOI | MR | Zbl
[3] Varbanets S., “Exponential sums on the sequences of inversive congruential pseudorandom numbers”, Siauliai Math. Semin., 3:11 (2008), 247–261 | MR | Zbl
[4] Vinogradov I.M., Izbrannye trudy, Selected works, Izdat. Akad. Nauk SSSR, Moscow, 1952 (Russian) | MR | Zbl