Norm of Gaussian integers in arithmetical progressions and narrow sectors
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 259-270
Voir la notice de l'article provenant de la source Math-Net.Ru
We proved the equidistribution of the Gaussian integer numbers in narrow sectors of the circle of radius $x^{\frac{1}{2}}$, $x\to\infty$, with the norms belonging to arithmetic progression $N(\alpha)\equiv\ell\pmod{q}$ with the common difference of an arithmetic progression $q$, $q\ll{x}^{\frac{2}{3}-\varepsilon}$.
Keywords:
Gaussian integers, norm groups, Hecke $Z$-function, functional equation.
@article{ADM_2020_29_2_a10,
author = {S. Varbanets and Ya. Vorobyov},
title = {Norm of {Gaussian} integers in arithmetical progressions and narrow sectors},
journal = {Algebra and discrete mathematics},
pages = {259--270},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a10/}
}
TY - JOUR AU - S. Varbanets AU - Ya. Vorobyov TI - Norm of Gaussian integers in arithmetical progressions and narrow sectors JO - Algebra and discrete mathematics PY - 2020 SP - 259 EP - 270 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a10/ LA - en ID - ADM_2020_29_2_a10 ER -
S. Varbanets; Ya. Vorobyov. Norm of Gaussian integers in arithmetical progressions and narrow sectors. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 259-270. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a10/