Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_29_1_a9, author = {A. A. Pypka}, title = {On some non-periodic groups whose cyclic subgroups are $GNA$-subgroups}, journal = {Algebra and discrete mathematics}, pages = {109--116}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a9/} }
A. A. Pypka. On some non-periodic groups whose cyclic subgroups are $GNA$-subgroups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 109-116. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a9/
[1] M. S. Ba, Z. I. Borevich, “On arrangement of intermediate subgroups”, Rings and Linear Groups, Kubansk. Univ., Krasnodar, 1988, 14–41 | MR
[2] P. Hall, “Finiteness conditions for soluble groups”, Proc. London Math. Soc., 4 (1954), 419–436 | MR | Zbl
[3] B. H. Neumann, “Groups with finite classes of conjugate elements”, Proc. London Math. Soc., 1 (1951), 178–187 | DOI | MR | Zbl
[4] B. I. Plotkin, “Radical groups”, Mat. Sb., 37 (1955), 507–526 | MR | Zbl
[5] A. A. Pypka, “On locally finite groups whose cyclic subgroups are GN\kern-2pt A-subgroups”, Algebra Discrete Math., 24:2 (2017), 308–319 | MR | Zbl
[6] A. A. Pypka, N. A. Turbay, “On $GNA$-subgroups in locally finite groups”, Proc. of Francisk Scorina Gomel state university, 93:6 (2015), 97–100 | Zbl
[7] R. Schmidt, Subgroup lattices of groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl