Group of continuous transformations of real interval preserving tails of $G_2$-representation of numbers
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 99-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we consider a two-symbol system of encoding for real numbers with two bases having different signs ${g_01}$ and $g_1=g_0-1$. Transformations (bijections of the set to itself) of interval $[0,g_0]$ preserving tails of this representation of numbers are studied. We prove constructively that the set of all continuous transformations from this class with respect to composition of functions forms an infinite non-abelian group such that increasing transformations form its proper subgroup. This group is a proper subgroup of the group of transformations preserving frequencies of digits of representations of numbers.
Keywords: two-symbol system of encoding for real numbers with two bases having different signs ($G_2$-representation), tail of representation of number, continuous transformation of interval, left and right shift operators, continuous transformation preserving tails of representations.
@article{ADM_2020_29_1_a8,
     author = {M. V. Pratsiovytyi and I. M. Lysenko and Yu. P. Maslova},
     title = {Group of continuous transformations of real interval preserving tails of $G_2$-representation of numbers},
     journal = {Algebra and discrete mathematics},
     pages = {99--108},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a8/}
}
TY  - JOUR
AU  - M. V. Pratsiovytyi
AU  - I. M. Lysenko
AU  - Yu. P. Maslova
TI  - Group of continuous transformations of real interval preserving tails of $G_2$-representation of numbers
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 99
EP  - 108
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a8/
LA  - en
ID  - ADM_2020_29_1_a8
ER  - 
%0 Journal Article
%A M. V. Pratsiovytyi
%A I. M. Lysenko
%A Yu. P. Maslova
%T Group of continuous transformations of real interval preserving tails of $G_2$-representation of numbers
%J Algebra and discrete mathematics
%D 2020
%P 99-108
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a8/
%G en
%F ADM_2020_29_1_a8
M. V. Pratsiovytyi; I. M. Lysenko; Yu. P. Maslova. Group of continuous transformations of real interval preserving tails of $G_2$-representation of numbers. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 99-108. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a8/

[1] M. Iosifescu, C. Kraaikamp, “Metric properties of Denjoy's canonical continued fraction expansion”, Tokyo J. Math., 31:2 (2008), 495–510 | DOI | MR | Zbl

[2] T. M. Isaieva, M. V. Pratsiovytyi, “Transformations of $(0, 1]$ preserving tails $\Delta^\mu$-representation of numbers”, Algebra Discrete Math., 22:1 (2016), 102–115 | MR | Zbl

[3] M. Pratsiovytyi, A. Chuikov, “Continuous distributions whose functions preserve tails of an $A$-continued fraction representation of numbers”, Random Oper. Stoch. Equ., 27:3 (2019), 199–206 | DOI | MR | Zbl

[4] R. Yu. Osaulenko, “Group of transformations of interval $[0,1]$ preserving frequencies of digits of $Q_s$-representation of numbers”, Trans. Inst. Math. Natl. Acad. Sci. Ukraine, 13:3 (2016), 191–204 (Ukrainian) | Zbl

[5] M. V. Pratsiovytyi, “Random variables with independent $Q_2$-symbols”, Asymptotic methods in investigation of stochastic models, Inst. Math. Acad. Sci. Ukrainian SSR, Kyiv, 1987, 92–102 (Russian)

[6] M. V. Pratsiovytyi, “Fractal properties of distributions of random variables whose $Q_2$-signs form a homogeneous Markov chain”, Asymptotic analysis of random evolutions, Inst. Math. Acad. Sci. Ukraine, Kyiv, 1994, 249–254 (Ukrainian)

[7] M. V. Pratsiovytyi, Yu. P. Maslova, “On one generalization of system of Rademacher and Walsh functions”, Mathematical problems of mechanics and computational mathematics, Trans. Inst. Math. Natl. Acad. Sci. Ukraine, 13, no. 3, 2016, 146–157 (Ukrainian)

[8] M. V. Pratsiovytyi, I. M. Lysenko, Yu. P. Maslova, “Geometry of numerical series: Series as a model of a real number in a new two-symbol system of encoding of numbers”, Mathematical problems of mechanics and computational mathematics, Trans. Inst. Math. Natl. Acad. Sci. Ukraine, 15, no. 1, 2018, 132–146 (Ukrainian)

[9] M. V. Pratsiovytyi, Fractal approach in investigation of singular probability distributions, Natl. Pedagog. Dragomanov Univ. Publ., Kyiv, 1998 (Ukrainian)

[10] M. V. Pratsiovytyi, I. M. Lysenko, Yu. P. Maslova, “Numeral system with two bases having different signs and related special functions”, Mathematical problems of mechanics and computational mathematics, Trans. Inst. Math. Natl. Acad. Sci. Ukraine, 16, 2019, to appear (Ukrainian)