Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_29_1_a8, author = {M. V. Pratsiovytyi and I. M. Lysenko and Yu. P. Maslova}, title = {Group of continuous transformations of real interval preserving tails of $G_2$-representation of numbers}, journal = {Algebra and discrete mathematics}, pages = {99--108}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a8/} }
TY - JOUR AU - M. V. Pratsiovytyi AU - I. M. Lysenko AU - Yu. P. Maslova TI - Group of continuous transformations of real interval preserving tails of $G_2$-representation of numbers JO - Algebra and discrete mathematics PY - 2020 SP - 99 EP - 108 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a8/ LA - en ID - ADM_2020_29_1_a8 ER -
%0 Journal Article %A M. V. Pratsiovytyi %A I. M. Lysenko %A Yu. P. Maslova %T Group of continuous transformations of real interval preserving tails of $G_2$-representation of numbers %J Algebra and discrete mathematics %D 2020 %P 99-108 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a8/ %G en %F ADM_2020_29_1_a8
M. V. Pratsiovytyi; I. M. Lysenko; Yu. P. Maslova. Group of continuous transformations of real interval preserving tails of $G_2$-representation of numbers. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 99-108. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a8/
[1] M. Iosifescu, C. Kraaikamp, “Metric properties of Denjoy's canonical continued fraction expansion”, Tokyo J. Math., 31:2 (2008), 495–510 | DOI | MR | Zbl
[2] T. M. Isaieva, M. V. Pratsiovytyi, “Transformations of $(0, 1]$ preserving tails $\Delta^\mu$-representation of numbers”, Algebra Discrete Math., 22:1 (2016), 102–115 | MR | Zbl
[3] M. Pratsiovytyi, A. Chuikov, “Continuous distributions whose functions preserve tails of an $A$-continued fraction representation of numbers”, Random Oper. Stoch. Equ., 27:3 (2019), 199–206 | DOI | MR | Zbl
[4] R. Yu. Osaulenko, “Group of transformations of interval $[0,1]$ preserving frequencies of digits of $Q_s$-representation of numbers”, Trans. Inst. Math. Natl. Acad. Sci. Ukraine, 13:3 (2016), 191–204 (Ukrainian) | Zbl
[5] M. V. Pratsiovytyi, “Random variables with independent $Q_2$-symbols”, Asymptotic methods in investigation of stochastic models, Inst. Math. Acad. Sci. Ukrainian SSR, Kyiv, 1987, 92–102 (Russian)
[6] M. V. Pratsiovytyi, “Fractal properties of distributions of random variables whose $Q_2$-signs form a homogeneous Markov chain”, Asymptotic analysis of random evolutions, Inst. Math. Acad. Sci. Ukraine, Kyiv, 1994, 249–254 (Ukrainian)
[7] M. V. Pratsiovytyi, Yu. P. Maslova, “On one generalization of system of Rademacher and Walsh functions”, Mathematical problems of mechanics and computational mathematics, Trans. Inst. Math. Natl. Acad. Sci. Ukraine, 13, no. 3, 2016, 146–157 (Ukrainian)
[8] M. V. Pratsiovytyi, I. M. Lysenko, Yu. P. Maslova, “Geometry of numerical series: Series as a model of a real number in a new two-symbol system of encoding of numbers”, Mathematical problems of mechanics and computational mathematics, Trans. Inst. Math. Natl. Acad. Sci. Ukraine, 15, no. 1, 2018, 132–146 (Ukrainian)
[9] M. V. Pratsiovytyi, Fractal approach in investigation of singular probability distributions, Natl. Pedagog. Dragomanov Univ. Publ., Kyiv, 1998 (Ukrainian)
[10] M. V. Pratsiovytyi, I. M. Lysenko, Yu. P. Maslova, “Numeral system with two bases having different signs and related special functions”, Mathematical problems of mechanics and computational mathematics, Trans. Inst. Math. Natl. Acad. Sci. Ukraine, 16, 2019, to appear (Ukrainian)