Locally soluble groups with the restrictions on the generalized norms
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 85-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies groups with given restrictions on norms of decomposable and Abelian non-cyclic subgroups. The properties of non-periodic locally soluble groups, in which such norms are nonidentity and have the identity intersection, are described.
Keywords: locally soluble groups, non-periodic group, generalized norms of groups, norm of decomposable subgroups, norm of Abelian non-cyclic subgroups, non-Dedekind group.
Mots-clés : decomposable group
@article{ADM_2020_29_1_a7,
     author = {T. Lukashova},
     title = {Locally soluble groups with the restrictions on the generalized norms},
     journal = {Algebra and discrete mathematics},
     pages = {85--98},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a7/}
}
TY  - JOUR
AU  - T. Lukashova
TI  - Locally soluble groups with the restrictions on the generalized norms
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 85
EP  - 98
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a7/
LA  - en
ID  - ADM_2020_29_1_a7
ER  - 
%0 Journal Article
%A T. Lukashova
%T Locally soluble groups with the restrictions on the generalized norms
%J Algebra and discrete mathematics
%D 2020
%P 85-98
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a7/
%G en
%F ADM_2020_29_1_a7
T. Lukashova. Locally soluble groups with the restrictions on the generalized norms. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 85-98. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a7/

[1] R. Baer, “Der Kern, eine charakteristische Untergruppe”, Comp. Math., 1 (1934), 254–283 | MR

[2] F. M. Lyman, T. D. Lukashova, M. G. Drushlyak, “Generalized norms of groups”, Algebra Discrete Math., 22:1 (2016), 48–80 | MR

[3] M. de Falco, F. de Giovanni, L. A. Kurdachenko, C. Musella, “The Metanorm and its Influence on the Group Structure”, J. Algebra, 506 (2018), 76–91 | DOI | MR | Zbl

[4] M. de Falco, F. de Giovanni, L. A. Kurdachenko, C. Musella, “The metanorm, a characteristic subgroup: embedding properties”, J. Group Theory, 21:5 (2018), 847–864 | DOI | MR | Zbl

[5] F. M. Lyman, T. D. Lukashova, “On norm of infinite cyclic subgroups in nonperiodic groups”, Bull. P. M. Masherov Vitebsk State Univ., 4 (2006), 108–111

[6] T. D. Lukashova, M. G. Drushlyak, F. M. Lyman, “Conditions of Dedekindness of generalized norms in non-periodic groups”, Asian-European Journal of Mathematics, 12:1 (2019), 1950093, 11 pp. | DOI | MR | Zbl

[7] F. N. Liman, Lukashova T. D., “On the norm of decomposable subgroups in locally finite groups”, Ukr. Math. J., 67:4 (2015), 542–551 | DOI | MR | Zbl

[8] F. N. Liman, “Groups in which every decomposable subgroup is invariant”, Ukr. Math J., 22:6 (1970), 625–631 | DOI

[9] T. D. Lukashova, “On norm of Abelian non-cyclic subgroups in infinite locally finite $p$-groups ($p\neq 2$)”, Bull. Taras Shevchenko National Univ. Kiev, 3 (2004), 35–39 | Zbl

[10] F. M. Lyman, “Non-peridic groups with some systems of invariant subgroups”, Algebra and Logic, 7:4 (1968), 70–86 | MR

[11] T. D. Lukashova, “Infinite locally finite groups with the locally nilpotent non-Dedekind norm of decomposable subgroups”, Communications in Algebra, 48:3 (2016), 1052–1057 | DOI | MR

[12] F. N. Liman, T. D. Lukashova, “On the norm of decomposable subgroups in the non-periodic groups”, Ukr. Math. J., 67:12 (2016), 1900–1912 | DOI | MR | Zbl

[13] F. N. Lyman, M. G. Drushlyak, “On non-periodic groups without free Abelian subgroups of rank 2 with non-Dedekind norm of Abelian non-cyclic subgroups”, Bulletin of University of Dnipropetrovsk, 6 (2011), 83–97

[14] A. G. Kurosh, Theory of Groups, Nauka, Moscow, 1967 (Russian) | MR

[15] J. D. Dixon, “Complements of normal subgroups in infinite groups”, Proc. London. Math. Soc., 17:3 (1967), 431–446 | DOI | MR | Zbl

[16] S. N. Chernikov, Groups with given properties of system of subgroups, Nauka, Moscow, 1980 | MR | Zbl

[17] L. Fuchs, Infinite Abelian Groups, v. 2, Mir, Moscow, 1977 (Russian) | MR