Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_29_1_a3, author = {M. Akbari and X. Y. Chen and A. R. Moghaddamfar}, title = {An {OD-characterizable} class of simple groups}, journal = {Algebra and discrete mathematics}, pages = {42--51}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a3/} }
M. Akbari; X. Y. Chen; A. R. Moghaddamfar. An OD-characterizable class of simple groups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 42-51. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a3/
[1] A. Iranmanesh and B. Khosravi, “A characterization of $C_2(q)$ where $q>5$”, Comment. Math. Univ. Carolin., 43 (2002), 9–21 | MR | Zbl
[2] A. Iranmanesh, B. Khosravi and S. H. Alavi, “A characterization of ${\rm PSU}_3(q)$ for $q>5$”, Southeast Asian Bull. Math., 26 (2002), 33–44 | DOI | MR | Zbl
[3] R. Kogani-Moghaddam and A. R. Moghaddamfar, “Groups with the same order and degree pattern”, Sci. China Math., 55 (2012), 701–720 | DOI | MR | Zbl
[4] A. S. Kondratév, “On prime graph components of finite simple groups”, USSR-Sb., 67 (1990), 235–247 | DOI | MR | Zbl
[5] V. D. Mazurov, “Recognition of the finite simple groups $S_4(q)$ by their element orders”, Algebra Logic, 41 (2002), 93–110 | DOI | MR | Zbl
[6] A. R. Moghaddamfar, A. R. Zokayi and M. R. Darafsheh, “A characterization of finite simple groups by the degrees of vertices of their prime graphs”, Algebra Colloq., 12 (2005), 431–442 | DOI | MR | Zbl
[7] P. Nosratpur and M. R. Darafsheh, “Characterization of the groups $G_2(q)$ for $2\equiv -1\pmod3$ by order components”, Sib. Math. J., 54 (2013), 883–893 | DOI | MR
[8] M. Suzuki, “On the prime graph of a finite simple group—an application of the method of Feit-Thompson-Bender-Glauberman”, Groups and combinatorics—in memory of Michio Suzuki, Adv. Stud. Pure Math., 32, Math. Soc. Japan, Tokyo, 2001, 41–207 | DOI | MR | Zbl
[9] A. V. Vasilév and I. B. Gorshkov, “On the recognition of finite simple groups with a connected prime graph”, Sib. Math. J., 50 (2009), 233–238 | DOI | MR | Zbl
[10] A. V. Vasilév and Staroletov, “Recognizability of the groups $G_2(q)$ by the spectrum”, Algebra Logic, 52 (2013), 1–14 | DOI | MR | Zbl
[11] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69 (1981), 487–513 | DOI | MR | Zbl
[12] A. V. Zavarnitsin, “Recognition of the simple groups ${\rm U}_3(q)$ by element orders”, Algebra Logic, 45 (2006), 106–116 | DOI | MR | Zbl
[13] A. V. Zavarnitsine, “Exceptional action of the simple groups ${\rm L}_4(q)$ in the defining characteristic”, Sib. Élektron. Mat. Izv., 5 (2008), 68–74 | MR | Zbl
[14] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sib. Elektron. Mat. Izv., 6 (2009), 1–12 | MR | Zbl
[15] L. C. Zhang and W. J. Shi, “OD-characterization of the projective special linear groups $L_2(q)$”, Algebra Colloq., 19 (2012), 509–524 | DOI | MR | Zbl