An OD-characterizable class of simple groups
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 42-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that nonabelian finite simple groups $S$ with $\max \pi(S)=37$ are uniquely determined by their order and degree pattern in the class of all finite groups.
Keywords: OD-characterization of a finite group, prime graph, degree pattern
Mots-clés : simple group.
@article{ADM_2020_29_1_a3,
     author = {M. Akbari and X. Y. Chen and A. R. Moghaddamfar},
     title = {An {OD-characterizable} class of simple groups},
     journal = {Algebra and discrete mathematics},
     pages = {42--51},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a3/}
}
TY  - JOUR
AU  - M. Akbari
AU  - X. Y. Chen
AU  - A. R. Moghaddamfar
TI  - An OD-characterizable class of simple groups
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 42
EP  - 51
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a3/
LA  - en
ID  - ADM_2020_29_1_a3
ER  - 
%0 Journal Article
%A M. Akbari
%A X. Y. Chen
%A A. R. Moghaddamfar
%T An OD-characterizable class of simple groups
%J Algebra and discrete mathematics
%D 2020
%P 42-51
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a3/
%G en
%F ADM_2020_29_1_a3
M. Akbari; X. Y. Chen; A. R. Moghaddamfar. An OD-characterizable class of simple groups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 42-51. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a3/

[1] A. Iranmanesh and B. Khosravi, “A characterization of $C_2(q)$ where $q>5$”, Comment. Math. Univ. Carolin., 43 (2002), 9–21 | MR | Zbl

[2] A. Iranmanesh, B. Khosravi and S. H. Alavi, “A characterization of ${\rm PSU}_3(q)$ for $q>5$”, Southeast Asian Bull. Math., 26 (2002), 33–44 | DOI | MR | Zbl

[3] R. Kogani-Moghaddam and A. R. Moghaddamfar, “Groups with the same order and degree pattern”, Sci. China Math., 55 (2012), 701–720 | DOI | MR | Zbl

[4] A. S. Kondratév, “On prime graph components of finite simple groups”, USSR-Sb., 67 (1990), 235–247 | DOI | MR | Zbl

[5] V. D. Mazurov, “Recognition of the finite simple groups $S_4(q)$ by their element orders”, Algebra Logic, 41 (2002), 93–110 | DOI | MR | Zbl

[6] A. R. Moghaddamfar, A. R. Zokayi and M. R. Darafsheh, “A characterization of finite simple groups by the degrees of vertices of their prime graphs”, Algebra Colloq., 12 (2005), 431–442 | DOI | MR | Zbl

[7] P. Nosratpur and M. R. Darafsheh, “Characterization of the groups $G_2(q)$ for $2\equiv -1\pmod3$ by order components”, Sib. Math. J., 54 (2013), 883–893 | DOI | MR

[8] M. Suzuki, “On the prime graph of a finite simple group—an application of the method of Feit-Thompson-Bender-Glauberman”, Groups and combinatorics—in memory of Michio Suzuki, Adv. Stud. Pure Math., 32, Math. Soc. Japan, Tokyo, 2001, 41–207 | DOI | MR | Zbl

[9] A. V. Vasilév and I. B. Gorshkov, “On the recognition of finite simple groups with a connected prime graph”, Sib. Math. J., 50 (2009), 233–238 | DOI | MR | Zbl

[10] A. V. Vasilév and Staroletov, “Recognizability of the groups $G_2(q)$ by the spectrum”, Algebra Logic, 52 (2013), 1–14 | DOI | MR | Zbl

[11] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69 (1981), 487–513 | DOI | MR | Zbl

[12] A. V. Zavarnitsin, “Recognition of the simple groups ${\rm U}_3(q)$ by element orders”, Algebra Logic, 45 (2006), 106–116 | DOI | MR | Zbl

[13] A. V. Zavarnitsine, “Exceptional action of the simple groups ${\rm L}_4(q)$ in the defining characteristic”, Sib. Élektron. Mat. Izv., 5 (2008), 68–74 | MR | Zbl

[14] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sib. Elektron. Mat. Izv., 6 (2009), 1–12 | MR | Zbl

[15] L. C. Zhang and W. J. Shi, “OD-characterization of the projective special linear groups $L_2(q)$”, Algebra Colloq., 19 (2012), 509–524 | DOI | MR | Zbl