Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_29_1_a12, author = {A. Trofimuk}, title = {On $p$-nilpotency of finite group with normally embedded maximal subgroups of some {Sylow} subgroups}, journal = {Algebra and discrete mathematics}, pages = {139--146}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a12/} }
TY - JOUR AU - A. Trofimuk TI - On $p$-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups JO - Algebra and discrete mathematics PY - 2020 SP - 139 EP - 146 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a12/ LA - en ID - ADM_2020_29_1_a12 ER -
A. Trofimuk. On $p$-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 139-146. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a12/
[1] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[2] V. S. Monakhov, Introduction to the Theory of Final Groups and Their Classes, Vysh. Shkola, Minsk, 2006 (Russian)
[3] S. Srinivasan, “Two sufficient conditions for supersolvability of finite groups”, Israel J. Math., 35 (1980), 210–214 | DOI | MR | Zbl
[4] V. S. Monakhov, A. A. Trofimuk, “Finite groups with subnormal non-cyclic subgroups”, J. Group Theory, 17:5 (2014), 889–895 | DOI | MR | Zbl
[5] W. Guo, Y. Lu, W. Niu, “$S$-embedded subgroups of finite groups”, Algebra Logika, 49:4 (2010), 433–450 | DOI | MR | Zbl
[6] K. Doerk and T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR
[7] V. S. Monakhov, I. K. Chirik, “On the $p$-supersolvability of a finite factorizable group with normal factors”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 256–267 | MR
[8] O. Yu. Schmidt, “Groups whose all subgroups are special”, Mat. Sb., 31 (1924), 366–372
[9] D. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, 2nd ed., Springer-Verlag, New York, 1996 | DOI | MR