On $p$-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 139-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $P$ be a $p$-subgroup of $G$. If $P$ is a Sylow subgroup of some normal subgroup of $G$, then we say that $P$ is normally embedded in $G$. Groups with normally embedded maximal subgroups of Sylow $p$-subgroup, where ${(|G|, p-1)=1}$, are studied. In particular, the $p$-nilpotency of such groups is proved.
Keywords: normally embedded subgroup, maximal subgroup, Sylow subgroup.
Mots-clés : $p$-supersolvable group
@article{ADM_2020_29_1_a12,
     author = {A. Trofimuk},
     title = {On $p$-nilpotency of finite group with normally embedded maximal subgroups of some {Sylow} subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {139--146},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a12/}
}
TY  - JOUR
AU  - A. Trofimuk
TI  - On $p$-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 139
EP  - 146
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a12/
LA  - en
ID  - ADM_2020_29_1_a12
ER  - 
%0 Journal Article
%A A. Trofimuk
%T On $p$-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
%J Algebra and discrete mathematics
%D 2020
%P 139-146
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a12/
%G en
%F ADM_2020_29_1_a12
A. Trofimuk. On $p$-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 139-146. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a12/

[1] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[2] V. S. Monakhov, Introduction to the Theory of Final Groups and Their Classes, Vysh. Shkola, Minsk, 2006 (Russian)

[3] S. Srinivasan, “Two sufficient conditions for supersolvability of finite groups”, Israel J. Math., 35 (1980), 210–214 | DOI | MR | Zbl

[4] V. S. Monakhov, A. A. Trofimuk, “Finite groups with subnormal non-cyclic subgroups”, J. Group Theory, 17:5 (2014), 889–895 | DOI | MR | Zbl

[5] W. Guo, Y. Lu, W. Niu, “$S$-embedded subgroups of finite groups”, Algebra Logika, 49:4 (2010), 433–450 | DOI | MR | Zbl

[6] K. Doerk and T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[7] V. S. Monakhov, I. K. Chirik, “On the $p$-supersolvability of a finite factorizable group with normal factors”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 256–267 | MR

[8] O. Yu. Schmidt, “Groups whose all subgroups are special”, Mat. Sb., 31 (1924), 366–372

[9] D. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, 2nd ed., Springer-Verlag, New York, 1996 | DOI | MR