On $p$-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 139-146
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group and $P$ be a $p$-subgroup of $G$. If $P$ is a Sylow subgroup of some normal subgroup of $G$, then we say that $P$ is normally embedded in $G$. Groups with normally embedded maximal subgroups of Sylow $p$-subgroup, where ${(|G|, p-1)=1}$, are studied. In particular, the $p$-nilpotency of such groups is proved.
Keywords:
normally embedded subgroup, maximal subgroup, Sylow subgroup.
Mots-clés : $p$-supersolvable group
Mots-clés : $p$-supersolvable group
@article{ADM_2020_29_1_a12,
author = {A. Trofimuk},
title = {On $p$-nilpotency of finite group with normally embedded maximal subgroups of some {Sylow} subgroups},
journal = {Algebra and discrete mathematics},
pages = {139--146},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a12/}
}
TY - JOUR AU - A. Trofimuk TI - On $p$-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups JO - Algebra and discrete mathematics PY - 2020 SP - 139 EP - 146 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a12/ LA - en ID - ADM_2020_29_1_a12 ER -
A. Trofimuk. On $p$-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 139-146. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a12/