On some topics in the theory of infinite dimensional linear groups
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 1-32

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a synopsis of some recent results concerned with infinite dimensional liner groups, including generalizations of irreducibility, the central dimension of a linear group, groups with finite dimensional orbits and the maximal and minimal conditions on subgroups of infinite central dimension.
Keywords: finite central dimension, irreducible group, quasi-irreducible group, FC-hypercentral, finite orbit, finite dimensional orbit
Mots-clés : augmentation dimension, minimal condition, maximal condition.
@article{ADM_2020_29_1_a1,
     author = {M. R. Dixon and L. A. Kurdachenko and N. N. Semko and I. Ya. Subbotin},
     title = {On some topics in the theory of infinite dimensional linear groups},
     journal = {Algebra and discrete mathematics},
     pages = {1--32},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a1/}
}
TY  - JOUR
AU  - M. R. Dixon
AU  - L. A. Kurdachenko
AU  - N. N. Semko
AU  - I. Ya. Subbotin
TI  - On some topics in the theory of infinite dimensional linear groups
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 1
EP  - 32
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a1/
LA  - en
ID  - ADM_2020_29_1_a1
ER  - 
%0 Journal Article
%A M. R. Dixon
%A L. A. Kurdachenko
%A N. N. Semko
%A I. Ya. Subbotin
%T On some topics in the theory of infinite dimensional linear groups
%J Algebra and discrete mathematics
%D 2020
%P 1-32
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a1/
%G en
%F ADM_2020_29_1_a1
M. R. Dixon; L. A. Kurdachenko; N. N. Semko; I. Ya. Subbotin. On some topics in the theory of infinite dimensional linear groups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 1-32. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a1/