On some topics in the theory of infinite dimensional linear groups
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 1-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a synopsis of some recent results concerned with infinite dimensional liner groups, including generalizations of irreducibility, the central dimension of a linear group, groups with finite dimensional orbits and the maximal and minimal conditions on subgroups of infinite central dimension.
Keywords: finite central dimension, irreducible group, quasi-irreducible group, FC-hypercentral, finite orbit, finite dimensional orbit
Mots-clés : augmentation dimension, minimal condition, maximal condition.
@article{ADM_2020_29_1_a1,
     author = {M. R. Dixon and L. A. Kurdachenko and N. N. Semko and I. Ya. Subbotin},
     title = {On some topics in the theory of infinite dimensional linear groups},
     journal = {Algebra and discrete mathematics},
     pages = {1--32},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a1/}
}
TY  - JOUR
AU  - M. R. Dixon
AU  - L. A. Kurdachenko
AU  - N. N. Semko
AU  - I. Ya. Subbotin
TI  - On some topics in the theory of infinite dimensional linear groups
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 1
EP  - 32
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a1/
LA  - en
ID  - ADM_2020_29_1_a1
ER  - 
%0 Journal Article
%A M. R. Dixon
%A L. A. Kurdachenko
%A N. N. Semko
%A I. Ya. Subbotin
%T On some topics in the theory of infinite dimensional linear groups
%J Algebra and discrete mathematics
%D 2020
%P 1-32
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a1/
%G en
%F ADM_2020_29_1_a1
M. R. Dixon; L. A. Kurdachenko; N. N. Semko; I. Ya. Subbotin. On some topics in the theory of infinite dimensional linear groups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 1-32. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a1/

[1] R. Baer, “Endlichkeitskriterien für Kommutatorgruppen”, Math. Ann., 124 (1952), 161–177 | DOI | MR | Zbl

[2] M. Bernkopf, “A history of infinite matrices”, Arch. History Exact Sci., 4:4 (1968), 308–358 | DOI | MR

[3] R. G. Cooke, Infinite matrices and sequence spaces, Dover Publications, Inc., New York, 1965 | MR | Zbl

[4] O. Yu. Dashkova, M. R. Dixon, and L. A. Kurdachenko, “Infinite dimensional linear groups with the restrictions on subgroups of infinite rank”, Proceedings of Gomel University, 3 (2006), 109–123 | MR

[5] O. Yu. Dashkova, M. R. Dixon, and L. A. Kurdachenko, “Linear groups with rank restrictions on the subgroups of infinite central dimension”, J. Pure Appl. Algebra, 208:3 (2007), 785–795 | DOI | MR | Zbl

[6] R. Dedekind, “Über Gruppen deren sämtliche Teiler Normalteiler sind”, Math. Ann., 48 (1897), 548–561 | DOI | MR | Zbl

[7] M. R. Dixon, M. J. Evans, and L. A. Kurdachenko, “Linear groups with the minimal condition on subgroups of infinite central dimension”, J. Algebra, 277 (2004), 172–186 | DOI | MR | Zbl

[8] M. R. Dixon and L. A. Kurdachenko, “Linear groups with infinite central dimension”, Groups St. Andrews 2005, v. 1, London Math. Soc. Lecture Note Ser., 339, Cambridge Univ. Press, Cambridge, 2007, 306–312 | MR | Zbl

[9] M. R. Dixon and L. A. Kurdachenko, “Abstract and linear groups with some specific restrictions”, Meeting on Group Theory and its applications (Madrid, Zaragoza 2011), 2012, 87–106 | Zbl

[10] M. R. Dixon, L. A. Kurdachenko, J. M. Muñoz-Escolano, and J. Otal, “Trends in infinite dimensional linear groups”, Groups St Andrews 2009 in Bath, v. 1, London Math. Soc. Lecture Note Ser., 387, Cambridge Univ. Press, Cambridge, 2011, 271–282 | MR | Zbl

[11] M. R. Dixon, L. A. Kurdachenko, and J. Otal, “Linear groups with bounded action”, Algebra Colloq., 18:3 (2011), 487–498 | DOI | MR | Zbl

[12] M. R. Dixon, L. A. Kurdachenko, and J. Otal, “Linear groups with finite dimensional orbits”, Ischia Group Theory 2010, World Sci. Publ., Hackensack, NJ, 2012, 131–145 | MR | Zbl

[13] M. R. Dixon, L. A. Kurdachenko, and J. Otal, “Linear analogues of theorems of Schur, Baer and Hall”, Int. J. Group Theory, 2:1 (2013), 79–89 | MR | Zbl

[14] M. R. Dixon, L. A. Kurdachenko, and J. Otal, “On the structure of some infinite dimensional linear groups”, Comm. Algebra, 45:1 (2017), 234–246 | DOI | MR | Zbl

[15] M. R. Dixon, L. A. Kurdachenko, and I. Ya. Subbotin, On an analogue of a theorem of P. Hall for infinite dimensional linear groups, to appear | MR

[16] M. R. Dixon, L. A. Kurdachenko, and I. Ya. Subbotin, On composition factors in modules over some group rings, to appear | MR

[17] M. R. Dixon, L. A. Kurdachenko, and I. Ya. Subbotin, Ranks of Groups: The Tools, Characteristics, and Restrictions, John Wiley Sons, Inc., Hoboken, NJ, 2017 | MR | Zbl

[18] M. De Falco, F. de Giovanni, C. Musella, and Y. P. Sysak, “On the upper central series of infinite groups”, Proc. Amer. Math. Soc., 139:2 (2011), 385–389 | DOI | MR | Zbl

[19] P. Hall, “Finite-by-nilpotent groups”, Proc. Cambridge Philos. Soc., 52 (1956), 611–616 | DOI | MR | Zbl

[20] P. Hall and C. R. Kulatilaka, “A property of locally finite groups”, J. London Math. Soc., 39 (1964), 235–239 | DOI | MR | Zbl

[21] W. Holubowski, Algebraic properties of groups of infinite matrices, Monografia (Gliwice), 671, Wydawnictwo Politechniki Śla̧skiej, Gliwice, 2017 (Russian) | MR | Zbl

[22] M. I. Kargapolov, “On a problem of O. Yu. Schmidt”, Sibirsk. Mat. Z., 4 (1963), 232–235 | MR | Zbl

[23] L. Kurdachenko and I. Subbotin, “On some infinite dimensional linear groups”, Groups St. Andrews 2001 in Oxford, v. II, London Math. Soc. Lecture Note Ser., 305, Cambridge Univ. Press, Cambridge, 2003, 377–384 | MR | Zbl

[24] L. A. Kurdachenko, “Modules over group rings with some finiteness conditions”, Ukrain. Mat. Zh., 54:7 (2002), 931–940 | DOI | MR | Zbl

[25] L. A. Kurdachenko, “On some infinite dimensional linear groups”, Note Mat., 30:suppl. 1 (2010), 21–36 | MR

[26] L. A. Kurdachenko, J. M. Muñoz-Escolano, and J. Otal, “Antifinitary linear groups”, Forum Math., 20:1 (2008), 27–44 | DOI | MR | Zbl

[27] L. A. Kurdachenko, J. M. Muñoz-Escolano, and J. Otal, “Locally nilpotent linear groups with the weak chain conditions on subgroups of infinite central dimension”, Publ. Mat., 52:1 (2008), 151–169 | DOI | MR | Zbl

[28] L. A. Kurdachenko, J. M. Muñoz-Escolano, and J. Otal, “Soluble linear groups with some restrictions on subgroups of infinite central dimension”, Ischia Group Theory 2008, World Sci. Publ., Hackensack, NJ, 2009, 156–173 | DOI | MR | Zbl

[29] L. A. Kurdachenko, J. M. Muñoz-Escolano, and J. Otal, “Groups acting on vector spaces with a large family of invariant subspaces”, Linear Multilinear Algebra, 60:4 (2012), 487–498 | DOI | MR | Zbl

[30] L. A. Kurdachenko, J. M. Muñoz-Escolano, J. Otal, and N. N. Semko, “Locally nilpotent linear groups with restrictions on their subgroups of infinite central dimension”, Geom. Dedicata, 138 (2009), 69–81 | DOI | MR | Zbl

[31] L. A. Kurdachenko, J. M. Muñoz-Escolano, J. Otal, and N. N. Semko, “Locally nilpotent linear groups with some restrictions on subgroups of infinite central dimension”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2009, no. 3, 25–28 | MR | Zbl

[32] L. A. Kurdachenko, J. Otal, and I. Ya. Subbotin, Groups with Prescribed Quotient Groups and Associated Module Theory, Series in Algebra, 8, World Scientific, Singapore, 2002 | MR | Zbl

[33] L. A. Kurdachenko, N. N. Semko, and I. Ya. Subbotin, Insight into Modules over Integral Domains, Proceedings of Institute of Mathematics, 75, Mathematics and its Applications, Kiev, 2008 | MR

[34] L. A. Kurdachenko and H. Smith, “Groups in which all subgroups of infinite rank are subnormal”, Glasg. Math. J., 46:1 (2004), 83–89 | DOI | MR | Zbl

[35] L. A. Kurdachenko and I. Ya. Subbotin, “On minimal Artinian modules and minimal Artinian linear groups”, Int. J. Math. Math. Sci., 27:12 (2001), 707–714 | DOI | MR | Zbl

[36] L. A. Kurdachenko and I. Ya. Subbotin, “On some infinite-dimensional linear groups”, Comm. Algebra, 29:2 (2001), 519–527 | DOI | MR | Zbl

[37] L. A. Kurdachenko and I. Ya. Subbotin, “On some infinite dimensional linear groups”, Southeast Asian Bull. Math., 26:5 (2003), 773–787 | MR | Zbl

[38] L. A. Kurdachenko and I. Ya. Subbotin, “Linear groups with the maximal condition on subgroups of infinite central dimension”, Publ. Mat., 50:1 (2006), 103–131 | DOI | MR | Zbl

[39] L. A. Kurdachenko. and I. Ya. Subbotin, “A brief history of an important classical theorem”, Adv. Group Theory Appl., 2 (2016), 121–124 | MR | Zbl

[40] A. G. Kurosh and S. N. Chernikov, “Solvable and nilpotent groups”, Uspekhi Mat. Nauk (N.S.), 2:3(19) (1947), 18–59 | MR | Zbl

[41] A. I. Maltsev, “On groups of finite rank”, Mat. Sb., 22 (1948), 351–352 | MR | Zbl

[42] G. A. Miller and H. Moreno, “Non-abelian groups in which every subgroup is abelian”, Trans. Amer. Math. Soc., 4 (1903), 398–404 | DOI | MR | Zbl

[43] J. M. Muñoz-Escolano, J. Otal, and N. N. Semko, “Periodic linear groups with the weak chain conditions on subgroups of infinite central dimension”, Comm. Algebra, 36:2 (2008), 749–763 | DOI | MR

[44] B. H. Neumann, “Groups with finite classes of conjugate elements”, Proc. London Math. Soc. (3), 1 (1951), 178–187 | DOI | MR | Zbl

[45] B. H. Neumann, “Groups covered by permutable subsets”, J. London Math. Soc., 29 (1954), 236–248 | DOI | MR | Zbl

[46] B. H. Neumann, “Groups with finite classes of conjugate subgroups”, Math. Z., 63 (1955), 76–96 | DOI | MR | Zbl

[47] A. Yu. Olshanskii, “An infinite simple torsion-free Noetherian group”, Izv. Akad. Nauk SSSR Ser. Mat., 43:6 (1979), 1328–1393 | MR | Zbl

[48] A. Yu. Olshanskii, “An infinite group with subgroups of prime orders”, Izv. Akad. Nauk SSSR Ser. Mat., 44:2 (1980), 309–321, 479 | MR

[49] Algebra and Logic, 21 (1982), 369–418 | DOI | MR

[50] R. E. Phillips, “Finitary linear groups: a survey”, Finite and Locally Finite Groups (Istanbul 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 471, eds. B. Hartley, G. M. Seitz, A. V. Borovik, and R. M. Bryant, Kluwer Acad. Publ., Dordrecht, 1995, 111–146 | MR | Zbl

[51] O. J. Schmidt, “Groups all of whose subgroups are nilpotent”, Mat. Sb., 31 (1924), 366–372 (Russian)

[52] D. I. Zaitsev, “The existence of direct complements in groups with operators”, Studies in Group Theory, Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1976, 26–44, 168 (Russian) | MR | Zbl

[53] D. I. Zaitsev, “Infinitely irreducible normal subgroups”, Structures of groups and properties of their subgroups, Inst. Kibernet., Akad. Nauk Ukrain. SSR, Kiev, 1978, 17–38 (Russian) ; 150–151 | MR