On some topics in the theory of infinite dimensional linear groups
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 1-32
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we present a synopsis of some recent results concerned with infinite dimensional liner groups, including generalizations of irreducibility, the central dimension of a linear group, groups with finite dimensional orbits and the maximal and minimal conditions on subgroups of infinite central dimension.
Keywords:
finite central dimension, irreducible group, quasi-irreducible group, FC-hypercentral, finite orbit, finite dimensional orbit
Mots-clés : augmentation dimension, minimal condition, maximal condition.
Mots-clés : augmentation dimension, minimal condition, maximal condition.
@article{ADM_2020_29_1_a1,
author = {M. R. Dixon and L. A. Kurdachenko and N. N. Semko and I. Ya. Subbotin},
title = {On some topics in the theory of infinite dimensional linear groups},
journal = {Algebra and discrete mathematics},
pages = {1--32},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a1/}
}
TY - JOUR AU - M. R. Dixon AU - L. A. Kurdachenko AU - N. N. Semko AU - I. Ya. Subbotin TI - On some topics in the theory of infinite dimensional linear groups JO - Algebra and discrete mathematics PY - 2020 SP - 1 EP - 32 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a1/ LA - en ID - ADM_2020_29_1_a1 ER -
%0 Journal Article %A M. R. Dixon %A L. A. Kurdachenko %A N. N. Semko %A I. Ya. Subbotin %T On some topics in the theory of infinite dimensional linear groups %J Algebra and discrete mathematics %D 2020 %P 1-32 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a1/ %G en %F ADM_2020_29_1_a1
M. R. Dixon; L. A. Kurdachenko; N. N. Semko; I. Ya. Subbotin. On some topics in the theory of infinite dimensional linear groups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 1-32. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a1/