Interassociativity and three-element doppelsemigroups
Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 224-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we characterize all interassociates of some non-inverse semigroups and describe up to isomorphism all three-element (strong) doppelsemigroups and their automorphism groups. We prove that there exist $75$ pairwise non-isomorphic three-element doppelsemigroups among which $41$ doppelsemigroups are commutative. Non-commutative doppelsemigroups are divided into $17$ pairs of dual doppelsemigroups. Also up to isomorphism there are $65$ strong doppelsemigroups of order $3$, and all non-strong doppelsemigroups are not commutative.
Keywords: semigroup, interassociativity, doppelsemigroup, strong doppelsemigroup.
@article{ADM_2019_28_2_a7,
     author = {Volodymyr Gavrylkiv and Diana Rendziak},
     title = {Interassociativity and three-element doppelsemigroups},
     journal = {Algebra and discrete mathematics},
     pages = {224--247},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a7/}
}
TY  - JOUR
AU  - Volodymyr Gavrylkiv
AU  - Diana Rendziak
TI  - Interassociativity and three-element doppelsemigroups
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 224
EP  - 247
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a7/
LA  - en
ID  - ADM_2019_28_2_a7
ER  - 
%0 Journal Article
%A Volodymyr Gavrylkiv
%A Diana Rendziak
%T Interassociativity and three-element doppelsemigroups
%J Algebra and discrete mathematics
%D 2019
%P 224-247
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a7/
%G en
%F ADM_2019_28_2_a7
Volodymyr Gavrylkiv; Diana Rendziak. Interassociativity and three-element doppelsemigroups. Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 224-247. http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a7/

[1] S. J. Boyd, M. Gould, A. Nelson, “Interassociativity of Semigroups”, Proceedings of the Tennessee Topology Conference, World Scientific, 1997, 33–51 | MR | Zbl

[2] S. Chotchaisthit, “Simple proofs determining all nonisomorphic semigroups of order 3”, Appl. Math. Sci., 8:26 (2014), 1261–1269 | MR

[3] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, v. I, Mathematical Surveys, 7, AMS, Providence, RI, 1961 | MR | Zbl

[4] M. Drouzy, La structuration des ensembles de semigroupes d'ordre 2, 3 et 4 par la relation d'interassociativité, manuscript, 1986

[5] V. M. Gavrylkiv, “Superextensions of three-element semigroups”, Carpathian Math. Publ., 9:1 (2017), 28–36 | DOI | MR | Zbl

[6] V. M. Gavrylkiv, “On the automorphism group of the superextension of a semigroup”, Mat. Stud., 48:1 (2017), 3–13 | DOI | MR | Zbl

[7] M. Gould, K. A. Linton, A. W. Nelson, “Interassociates of monogenic semigroups”, Semigroup Forum, 68 (2004), 186–201 | DOI | MR | Zbl

[8] M. Gould, R. E. Richardson, “Translational hulls of polynomially related semigroups”, Czechoslovak Math. J., 33 (1983), 95–100 | DOI | MR | Zbl

[9] J. B. Hickey, “Semigroups under a sandwich operation”, Proc. Edinburgh Math. Soc., 26 (1983), 371–382 | DOI | MR | Zbl

[10] J. B. Hickey, “On Variants of a semigroup”, Bull. Austral. Math. Soc., 34 (1986), 447–459 | DOI | MR | Zbl

[11] J. M. Howie, Fundamentals of semigroup theory, The Clarendon Press; Oxford University Press, New York, 1995 | MR

[12] A. V. Zhuchok, M. Demko, “Free $n$-dinilpotent doppelsemigroups”, Algebra Discrete Math., 22:2 (2016), 304–316 | MR | Zbl

[13] A. V. Zhuchok, “Free products of doppelsemigroups”, Algebra Univers., 77:3 (2017), 361–374 | DOI | MR | Zbl

[14] A. V. Zhuchok, “Free left $n$-dinilpotent doppelsemigroups”, Commun. Algebra, 45:11 (2017), 4960–4970 | DOI | MR | Zbl

[15] A. V. Zhuchok, “Structure of free strong doppelsemigroups”, Commun. Algebra, 46:8 (2018), 3262–3279 | DOI | MR | Zbl

[16] A. V. Zhuchok, K. Knauer, “Abelian doppelsemigroups”, Algebra Discrete Math., 26:2 (2018), 290–304 | MR | Zbl

[17] A. V. Zhuchok, Relatively free doppelsemigroups, Monograph series Lectures in Pure and Applied Mathematics, 5, Potsdam University Press, Germany, Potsdam, 2018, 86 pp. | Zbl

[18] Y. V. Zhuchok, J. Koppitz, “Representations of ordered doppelsemigroups by binary relations”, Algebra Discrete Math., 27:1 (2019), 144–154 | MR | Zbl

[19] A. V. Zhuchok, Yul. V. Zhuchok, J. Koppitz, “Free rectangular doppelsemigroups”, J. Algebra Appl. | DOI | MR

[20] D. Zupnik, “On interassociativity and related questions”, Aequationes Math., 6 (1971), 141–148 | DOI | MR | Zbl