Interassociativity and three-element doppelsemigroups
Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 224-247

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we characterize all interassociates of some non-inverse semigroups and describe up to isomorphism all three-element (strong) doppelsemigroups and their automorphism groups. We prove that there exist $75$ pairwise non-isomorphic three-element doppelsemigroups among which $41$ doppelsemigroups are commutative. Non-commutative doppelsemigroups are divided into $17$ pairs of dual doppelsemigroups. Also up to isomorphism there are $65$ strong doppelsemigroups of order $3$, and all non-strong doppelsemigroups are not commutative.
Keywords: semigroup, interassociativity, doppelsemigroup, strong doppelsemigroup.
@article{ADM_2019_28_2_a7,
     author = {Volodymyr Gavrylkiv and Diana Rendziak},
     title = {Interassociativity and three-element doppelsemigroups},
     journal = {Algebra and discrete mathematics},
     pages = {224--247},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a7/}
}
TY  - JOUR
AU  - Volodymyr Gavrylkiv
AU  - Diana Rendziak
TI  - Interassociativity and three-element doppelsemigroups
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 224
EP  - 247
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a7/
LA  - en
ID  - ADM_2019_28_2_a7
ER  - 
%0 Journal Article
%A Volodymyr Gavrylkiv
%A Diana Rendziak
%T Interassociativity and three-element doppelsemigroups
%J Algebra and discrete mathematics
%D 2019
%P 224-247
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a7/
%G en
%F ADM_2019_28_2_a7
Volodymyr Gavrylkiv; Diana Rendziak. Interassociativity and three-element doppelsemigroups. Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 224-247. http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a7/