Cohen--Macaulay modules over the plane curve singularity of type $T_{36}$
Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 213-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a wide class of Cohen–Macaulay modules over the local ring of the plane curve singularity of type $T_{36}$ we describe explicitly the corresponding matrix factorizations. The calculations are based on the technique of matrix problems, in particular, representations of bunches of chains.
Keywords: Cohen–Macaulay modules, matrix factorizations, bimodule problems, bunches of chains.
@article{ADM_2019_28_2_a6,
     author = {Yuriy A. Drozd and Oleksii Tovpyha},
     title = {Cohen--Macaulay modules over the plane curve singularity of type $T_{36}$},
     journal = {Algebra and discrete mathematics},
     pages = {213--223},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a6/}
}
TY  - JOUR
AU  - Yuriy A. Drozd
AU  - Oleksii Tovpyha
TI  - Cohen--Macaulay modules over the plane curve singularity of type $T_{36}$
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 213
EP  - 223
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a6/
LA  - en
ID  - ADM_2019_28_2_a6
ER  - 
%0 Journal Article
%A Yuriy A. Drozd
%A Oleksii Tovpyha
%T Cohen--Macaulay modules over the plane curve singularity of type $T_{36}$
%J Algebra and discrete mathematics
%D 2019
%P 213-223
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a6/
%G en
%F ADM_2019_28_2_a6
Yuriy A. Drozd; Oleksii Tovpyha. Cohen--Macaulay modules over the plane curve singularity of type $T_{36}$. Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 213-223. http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a6/

[1] Bondarenko V. M., “Representations of bundles of semichained sets and their applications”, Algebra i Analiz, 3:5 (1991), 38–61 | MR

[2] Burban I., Drozd Y., “Derived categories of nodal algebras”, J. Algebra, 272 (2004), 46–94 | DOI | MR | Zbl

[3] Burban I., Iyama O., Keller B., Reiten I., “Cluster tilting for one-dimensional hypersurface singularities”, Adv. Math., 217 (2008), 2443–2484 | DOI | MR | Zbl

[4] Dieterich E., “Lattices over curve singularities with large conductor”, Invent Math., 114 (1993), 399–433 | DOI | MR | Zbl

[5] Drozd Y., “Cohen-Macaulay Modules over Cohen-Macaulay Algebras”, Representation Theory of Algebras and Related Topics, 19, CMS Conference Proceedings (1996), 25–53 | MR

[6] Drozd Y., “Reduction algorithm and representations of boxes and algebras”, C. R. Math. Acad. Sci., Soc. R. Can., 23:4 (2001), 97–125 | MR | Zbl

[7] Drozd Y., Greuel G.-M., “Cohen–Macaulay module type”, Compositio Math., 89:3 (1993), 315–338 | MR | Zbl

[8] Drozd Y., Tovpyha O., “On Cohen-Macaulay modules over the plane curve singularity of type $T_{44}$”, Arch. Math., 108 (2017), 569–579 | DOI | MR | Zbl

[9] Drozd Y., Tovpyha O., “On Cohen-Macaulay modules over the plane curve singularity of type $T_{44}$, II”, Algebra Discrete Math., 28 (2019), 75–93 | MR | Zbl

[10] Eisenbud D., “Homological algebra on a complete intersection, with an application to group representations”, Trans. Amer. Math. Soc., 260 (1980), 35–64 | DOI | MR | Zbl

[11] Gantmacher F. R., The Theory of Matrices, Fizmatlit, Moscow, 2004 | MR

[12] Nazarova L. A., Roiter A. V., “Representations of the partially ordered sets”, Zap. Nauchn. Sem. LOMI, 28, Nauka, 1972, 5–31 | MR | Zbl

[13] Ringel C. M., “Tame Algebras”, Lecture Notes in Math., 1099, Springer-Verlag, 1984 | DOI | MR | Zbl

[14] Yoshino Y., Cohen–Macaulay Modules over Cohen–Macaulay Rings, Cambridge University Press, 1990 | MR | Zbl