On dimension of product of groups
Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 203-212

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the product formula $\operatorname{cd}(\Gamma\times\Gamma)=2\operatorname{cd}\Gamma$ for cohomological dimension of geometrically finite groups.
Keywords: product of groups, cohomological dimension.
@article{ADM_2019_28_2_a5,
     author = {Alexander Dranishnikov},
     title = {On dimension of product of groups},
     journal = {Algebra and discrete mathematics},
     pages = {203--212},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a5/}
}
TY  - JOUR
AU  - Alexander Dranishnikov
TI  - On dimension of product of groups
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 203
EP  - 212
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a5/
LA  - en
ID  - ADM_2019_28_2_a5
ER  - 
%0 Journal Article
%A Alexander Dranishnikov
%T On dimension of product of groups
%J Algebra and discrete mathematics
%D 2019
%P 203-212
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a5/
%G en
%F ADM_2019_28_2_a5
Alexander Dranishnikov. On dimension of product of groups. Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 203-212. http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a5/