Continuous limits of tilting modules
Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 184-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provided a constructive argument to obtain an infinite generated tilting module from a family of tilting modules satisfying some hypotheses. We also applied the result over a hereditary algebra to get the Lukas tilting module.
Keywords: direct limits, special preenvelope, tilting modules, infinitely generated tilting module.
@article{ADM_2019_28_2_a3,
     author = {Clezio Aparecido Braga},
     title = {Continuous limits of tilting modules},
     journal = {Algebra and discrete mathematics},
     pages = {184--194},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a3/}
}
TY  - JOUR
AU  - Clezio Aparecido Braga
TI  - Continuous limits of tilting modules
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 184
EP  - 194
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a3/
LA  - en
ID  - ADM_2019_28_2_a3
ER  - 
%0 Journal Article
%A Clezio Aparecido Braga
%T Continuous limits of tilting modules
%J Algebra and discrete mathematics
%D 2019
%P 184-194
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a3/
%G en
%F ADM_2019_28_2_a3
Clezio Aparecido Braga. Continuous limits of tilting modules. Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 184-194. http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a3/

[1] Angeleri-Hügel L., Coelho F. U., “Infinitely generated tilting modules of finite projective dimension”, Forum Math., 2 (2001), 239–250 | MR | Zbl

[2] Assem I., Simson D., Skowroński A., Elements of the representation theory of associative algebras, v. 1, Cambridge University Press, 2006 | MR | Zbl

[3] Auslander M., Platzeck M. I., Reiten I., “Coxeter functors without diagrams”, Trans. Amer. Math. Soc., 250 (1979), 1–46 | DOI | MR | Zbl

[4] Auslander M., Smalo S., “Almost split sequences in subcategories”, J. Algebra, 69 (1981), 426–454; | DOI | MR | Zbl

[5] Auslander M., Smalo S., “Preprojective modules over Artin algebras”, J. Algebra, 66 (1980), 61–122 | DOI | MR | Zbl

[6] Bazzoni S., Stovícek J., “All tilting modules are of finite type”, Proc. Amer. Math. Soc., 135 (2007), 3771–3781 | DOI | MR | Zbl

[7] Braga C., Coelho F. U., “Limits of tilting modules”, Colloq. Math., 115 (2009), 207–217 | DOI | MR | Zbl

[8] Brenner S., Butler M., “Generalization of the Bernstein-Gelfand-Panomarev reflections functor”, Proc. of ICRA II, Lectures Notes in Mathematics, 832, Springer, 1980, 103–169 | DOI | MR

[9] Buan A. B., Solberg O., “Limits of pure-injective cotilting modules”, Journal of Algebras and Representations Theory, 8 (2005), 621–634 | DOI | MR | Zbl

[10] Eklof P., Trlifaj J., “How to make ext vanish”, Bull. London Math. Soc., 33 (2001), 41–51 | DOI | MR | Zbl

[11] Enochs E., “Injective and flat covers, envelops and resolvents”, Israel J. Math., 39 (1981), 189–209 | DOI | MR | Zbl

[12] Happel D., Ringel C. M., “Tilted algebras”, Trans. Amer. Math. Soc., 274 (1982), 399–443 | DOI | MR | Zbl

[13] Kerner O., Trlifaj J., “Tilting classes over wild hereditary algebras”, Journal of Algebra, 290 (2005,), 538–556 | DOI | MR | Zbl

[14] Lukas F., “Infinite dimensional modules over hereditary algebras”, J. London Math. Soc., 44 (1991), 401–419 | DOI | MR | Zbl

[15] Rotman J., An introduction to homological algebra, 2nd ed., Academic Press, 2000 | MR