Strongly prime submodules and strongly 0-dimensional modules
Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 171-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we study strongly prime submodules and strongly 0-dimensional modules. We give some equivalent conditions for being a strongly 0-dimensional module. Besides we show that the quasi-Zariski topology on the spectrum of a strongly 0-dimensional module satisfies all separation axioms and it is a metrizable space.
Keywords: strongly prime submodule, strongly 0-dimensional module, quasi-Zariski topology.
Mots-clés : multiplication module
@article{ADM_2019_28_2_a2,
     author = {Z. Bilgin and S. Ko\c{c} and A. \"Ozkiri\c{s}ci},
     title = {Strongly prime submodules and strongly 0-dimensional modules},
     journal = {Algebra and discrete mathematics},
     pages = {171--183},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a2/}
}
TY  - JOUR
AU  - Z. Bilgin
AU  - S. Koç
AU  - A. Özkirişci
TI  - Strongly prime submodules and strongly 0-dimensional modules
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 171
EP  - 183
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a2/
LA  - en
ID  - ADM_2019_28_2_a2
ER  - 
%0 Journal Article
%A Z. Bilgin
%A S. Koç
%A A. Özkirişci
%T Strongly prime submodules and strongly 0-dimensional modules
%J Algebra and discrete mathematics
%D 2019
%P 171-183
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a2/
%G en
%F ADM_2019_28_2_a2
Z. Bilgin; S. Koç; A. Özkirişci. Strongly prime submodules and strongly 0-dimensional modules. Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 171-183. http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a2/

[1] Abd. El-Bast Z., Smith P. F., “Multiplication modules”, Comm. Algebra, 16 (1988), 755–779 | DOI | MR | Zbl

[2] Ameri R., “On the prime submodules of multiplication modules”, Int. J. Math. Sci., 27 (2003), 1715–1724 | DOI | MR | Zbl

[3] Anderson D. D., Winders M., “Idealization of a module”, J. Commut. Algebra, 56:1 (2009), 3–56 | MR | Zbl

[4] Atiyah M. F., MacDonald I. G., Introduction to Commutative Algebra, Addison-Wesley Publishing Company, Massachusetts, 1994 | MR

[5] Barnard A., “Multiplication modules”, J. Algebra, 71:1 (1988), 174–178 | DOI | MR

[6] Bilgin Z., Oral K. H., “Coprimely structured modules”, Palestine J. Math., 7 (2018), 161–169 | MR | Zbl

[7] Brewer J., Richman F., “Subrings of 0-dimensional rings”, Multiplicative Ideal Theory in Commutative Rings, 2006, 73–88 | DOI | MR | Zbl

[8] Gilmer R. W., “An intersection condition for prime ideals”, Lect. Notes Pure Appl., 189 (1997), 327–331 | MR | Zbl

[9] Gottlieb C., “On strongly prime ideals and strongly zero-dimensional rings”, J. Algebra Appl., 16:10 (2017), 1750191-1–1750191-9 | DOI | MR

[10] Hedstrom J. R., Houston E. G., “Pseudo-valuation domains”, Pacific J. Math., 75:1 (1978), 137–147 | DOI | MR | Zbl

[11] Huckaba J. A., Commutative rings with zero divisors, New York Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., 1988 | MR | Zbl

[12] Jayaram C., Oral K. H., Tekir Ü., “Strongly 0-dimensional rings”, Comm. Algebra, 41:6 (2013), 2026–2032 | DOI | MR | Zbl

[13] McCasland R. L., Moore M. E., Smith P. F., “On the spectrum of a module over a commutative ring”, Comm. Algebra, 25:1 (1997), 79–103 | DOI | MR | Zbl

[14] Mostafanasab H., Yetkin E., Tekir Ü., Darani A. Y., “On 2-Absorbing primary submodules over commutative rings”, An. St. Univ. Ovidius Constanta, 24:1 (2016), 335–351 | MR | Zbl

[15] Oral K. H., Özkirişci N. A., Tekir Ü., “Strongly 0-dimensional module”, Canad. Math. Bull., 57:1 (2014), 159–165 | DOI | MR | Zbl

[16] Smith P. F., “Some remarks on multiplication modules”, Arch. Math., 50:3 (1988), 223–235 | DOI | MR | Zbl