Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_28_2_a10, author = {Marcin Skrzy\'nski}, title = {On {NSP} constants of a matrix and their linear preservers}, journal = {Algebra and discrete mathematics}, pages = {278--290}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a10/} }
Marcin Skrzyński. On NSP constants of a matrix and their linear preservers. Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 278-290. http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a10/
[1] L. B. Beasley, T. J. Laffey, “Linear operators on matrices: the invariance of rank-$k$ matrices”, Linear Algebra Appl., 133 (1990), 175–184 | DOI | MR | Zbl
[2] L. B. Beasley, C.-K. Li, M.-H. Lim, R. Loewy, B. R. McDonald, S. Pierce (eds.), “A survey of linear preserver problems”, Linear Multilinear Algebra, 33 (1992), 1–2 | DOI | MR | Zbl
[3] A. Cohen, W. Dahmen, R. DeVore, “Compressed sensing and best $k$-term approximation”, J. Am. Math. Soc., 22:1 (2009), 211–231 | DOI | MR | Zbl
[4] D. L. Donoho, M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via $\ell^1$ minimization”, Proc. Natl. Acad. Sci. USA, 100:5 (2003), 2197–2202 | DOI | MR | Zbl
[5] M. Fornasier, H. Rauhut, “Compressive Sensing”, Handbook of Mathematical Methods in Imaging, ed. O. Scherzer, Springer, 2011, 187–228 | DOI | MR | Zbl
[6] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977 | MR | Zbl
[7] M. Skrzyński, “Remarks on the spark of a matrix and the Null Space Property”, Publ. Inst. Math., Nouv. Sér., accepted | MR
[8] M. Skrzyński, “A note on preserving the spark of a matrix”, Ann. Univ. Paedagog. Crac., Stud. Math., 14 (2015), 63–67 | MR | Zbl
[9] M. Skrzyński, “Remarks on algebraic and geometric properties of the spark of a matrix”, Recent Results in Pure and Applied Mathematics (Podlasie 2014), eds. A. Gomolińska et al., Bialystok University of Technology Publishing Office, 2014, 43–48