On schurity of one-sided bimodule problems
Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 157-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of normal bimodule problems satisfying some structure, triangularity and finiteness conditions (one-sided bimodule problems). We study the structure of non-schurian bimodule problems from our class and describe explicitly the minimal non-schurian one-sided bimodule problems.
Keywords: bimodule problem, representation, schurity.
Mots-clés : quasi multiplicative basis, Tits quadratic form
@article{ADM_2019_28_2_a1,
     author = {Vyacheslav Babych and Nataliya Golovashchuk},
     title = {On schurity of one-sided bimodule problems},
     journal = {Algebra and discrete mathematics},
     pages = {157--170},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a1/}
}
TY  - JOUR
AU  - Vyacheslav Babych
AU  - Nataliya Golovashchuk
TI  - On schurity of one-sided bimodule problems
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 157
EP  - 170
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a1/
LA  - en
ID  - ADM_2019_28_2_a1
ER  - 
%0 Journal Article
%A Vyacheslav Babych
%A Nataliya Golovashchuk
%T On schurity of one-sided bimodule problems
%J Algebra and discrete mathematics
%D 2019
%P 157-170
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a1/
%G en
%F ADM_2019_28_2_a1
Vyacheslav Babych; Nataliya Golovashchuk. On schurity of one-sided bimodule problems. Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 157-170. http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a1/

[1] Babych V. M. and Golovashchuk N. S., “An Application of Covering Techniques”, Scientific Bulletin of Uzhgorod Univ. Series Mathematics and Informatics, 8 (2003), 4–14 | MR | Zbl

[2] Babych V. M., Golovashchuk N. S. and Ovsienko S. A., “Quasi multiplicative bases for bimodule problems from some class”, Scientific Bulletin of Uzhgorod Univ. Series Mathematics and Informatics, 22 (2011), 12–17 | Zbl

[3] Babych V. M., Golovashchuk N. S. and Ovsienko S. A., “Generalized multiplicative bases for one-sided bimodule problems”, Algebra Discrete Math., 12:2 (2011), 1–24 | MR | Zbl

[4] Bondarenko V. M., Golovashuk N. S., Ovsienko, S. A. and Roiter A. V., Schurian matrix problems and quadratic forms, Preprint 78.25, Inst. of Math., Academy of Sci. USSR, 1978 (in Russian) | MR

[5] Crawley-Boewey W. W., “Matrix problems and Drozd's theorem”, Banach Center publ., 26, part 1, 1990, 199–222 | DOI | MR

[6] Drozd Yu. A., “Coxeter transformations and representations of partially ordered sets”, Funkts. Anal. Prilozhen., 8 (1974), 34–42 (in Russian) | MR | Zbl

[7] Drozd Yu. A., “Reduction algorithm and representations of boxes and algebras”, Comptes Rendue Math. Acad. Sci. Canada, 23 (2001), 97–125 | MR | Zbl

[8] AMS Translations, 128 | MR | Zbl

[9] Drozd Yu. A., Ovsienko S. A.and Furchin B. Yu., “Categorical constructions in representations theory”, Algebraic Structures and Their Applications, Kiev State Univ., Kiev, 1988, 17–43

[10] Gabriel P., “Auslander-Reiten sequences and representation-finite algebras”, LNM, 831, Springer, 1980, 1–71 | MR

[11] Gabriel P., “Indecomposable representations II”, Symposia Math. Ist. Naz. Alta Mat., 11 (1973), 81–104 | MR | Zbl

[12] Gabriel P. and Roiter A., Representations of finite-dimensional algebras, Algebra VIII, Encyclopaedia of Math. Sci., 73, Springer, New York, 1992 | MR | Zbl

[13] Kleiner M. M., “Partially ordered sets of finite type”, Studies in the theory of representations, Zap. Nauchn. Sem. LOMI, 28, Nauka, Leningrad. Otdel., Leningrad, 1972, 32–41 (in Russian) | MR | Zbl

[14] Kleiner M. M.and Roiter A. V., “Representations of differential graded categories”, LNM, 488, Springer, 1975, 316–340 | MR

[15] Krause H., “Krull-Schmidt categories and projective covers”, Expo. Math., 33:4 (2015), 535–549 | DOI | MR | Zbl

[16] Ovsienko S. A., “Bimodule and matrix problems”, Progress in Mathematics, 173 (1999), 323–357 | MR | Zbl

[17] Peña J. A. de la., “On the dimension of the module-varieties of tame and wild algebras”, Commun. Algebra, 19 (1991), 1795–1807 | DOI | MR | Zbl

[18] Ringel C. M., Tame Algebras and Integral Quadratic Forms, LNM, 1099, Springer, 1984 | MR | Zbl