Representations of strongly algebraically closed algebras
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 130-143

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of $q^\prime$-compactness for MV-algebras. One of the main results of the paper is a characterization of a class of orthomodular lattices that are horizontal sums of strongly algebraically closed algebras.
Keywords: Sheffer stroke basic algebra, strongly algebraically closed algebra, algebraic realizations, MV-algebra, $q'$-compact algebra.
Mots-clés : horizontal sum
@article{ADM_2019_28_1_a9,
     author = {A. Molkhasi and K. P. Shum},
     title = {Representations of strongly algebraically closed algebras},
     journal = {Algebra and discrete mathematics},
     pages = {130--143},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a9/}
}
TY  - JOUR
AU  - A. Molkhasi
AU  - K. P. Shum
TI  - Representations of strongly algebraically closed algebras
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 130
EP  - 143
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a9/
LA  - en
ID  - ADM_2019_28_1_a9
ER  - 
%0 Journal Article
%A A. Molkhasi
%A K. P. Shum
%T Representations of strongly algebraically closed algebras
%J Algebra and discrete mathematics
%D 2019
%P 130-143
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a9/
%G en
%F ADM_2019_28_1_a9
A. Molkhasi; K. P. Shum. Representations of strongly algebraically closed algebras. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 130-143. http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a9/