@article{ADM_2019_28_1_a5,
author = {Y. A. Drozd and O. V. Tovpyha},
title = {Cohen{\textendash}Macaulay modules over the plane curve singularity of type $T_{44}${,~II}},
journal = {Algebra and discrete mathematics},
pages = {75--93},
year = {2019},
volume = {28},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a5/}
}
Y. A. Drozd; O. V. Tovpyha. Cohen–Macaulay modules over the plane curve singularity of type $T_{44}$, II. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 75-93. http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a5/
[1] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Singularities of Differentiable Maps, Nauka, Moscow, 1982 | MR
[2] Bondarenko V. M., “Representations of bundles of semichained sets and their applications”, Algebra i Analiz, 3:5 (1991), 38–61 | MR
[3] Burban I., Drozd Y., “Derived categories of nodal algebras”, J. Algebra, 272 (2004), 46–94 | DOI | MR | Zbl
[4] Burban I., Iyama O., Keller B, Reiten I., “Cluster tilting for one-dimensional hypersurface singularities”, Adv. Math., 217 (2008), 2443–2484 | DOI | MR | Zbl
[5] Dieterich E., “Lattices over curve singularities with large conductor”, Invent. Math., 114 (1993), 399–433 | DOI | MR | Zbl
[6] Drozd Y., “Reduction algorithm and representations of boxes and algebras”, C. R. Math. Acad. Sci. Soc. R. Can., 23 (2001), 97–125 | MR | Zbl
[7] Drozd Y., Greuel G.-M., “Cohen–Macaulay module type”, Compositio Math., 89 (1993), 315–338 | MR | Zbl
[8] Drozd Y., Tovpyha O., “On Cohen–Macaulay modules over the plane curve singularity of type $T_{44}$”, Arch. Math., 108 (2017), 569–579 | DOI | MR | Zbl
[9] Eisenbud D., “Homological algebra on a complete intersection, with an application to group representations”, Trans. Amer. Math. Soc., 260 (1980), 35–64 | DOI | MR | Zbl
[10] Gantmacher F. R., The Theory of Matrices, Fizmatlit, Moscow, 2004 | MR
[11] Ringel C. M., Tame Algebras, Lecture Notes in Math., 1099, Springer-Verlag, 1984 | DOI | MR | Zbl