Exact sequences of graphs
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 1-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, exact sequences of graphs are defined and investigated. Considering some functors on the category of graphs, we study some conditions to determine exactness of functors.
Keywords: graph category, graph exact sequence, graph functor.
@article{ADM_2019_28_1_a0,
     author = {Ahmad Abbasi and Ali Ramin},
     title = {Exact sequences of graphs},
     journal = {Algebra and discrete mathematics},
     pages = {1--19},
     year = {2019},
     volume = {28},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a0/}
}
TY  - JOUR
AU  - Ahmad Abbasi
AU  - Ali Ramin
TI  - Exact sequences of graphs
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 1
EP  - 19
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a0/
LA  - en
ID  - ADM_2019_28_1_a0
ER  - 
%0 Journal Article
%A Ahmad Abbasi
%A Ali Ramin
%T Exact sequences of graphs
%J Algebra and discrete mathematics
%D 2019
%P 1-19
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a0/
%G en
%F ADM_2019_28_1_a0
Ahmad Abbasi; Ali Ramin. Exact sequences of graphs. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a0/

[1] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, 2001 | MR | Zbl

[2] G. Hahn, C. Tardif, “Graph homomorphisms: structure and symmetry”, Graph symmetry (Montreal, PQ, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 497, Kluwer Acad. Publ., Dordrecht, 1997, 107–166 | MR | Zbl

[3] R. Hammack, W. Imrich, S.Klavžar, Handbook of Product Graphs, 2nd ed., CRC Press: Taylor and Francis Group, 2011 | MR | Zbl

[4] M. Kilp and U. Knauer, “Graph operations and categorical constructions”, Acta Comment. Univ. Tartu, Mathematica, 5 (200), 43–57 | MR | Zbl

[5] U. Knauer, Algebraic Graph Theory. Morphisms, monoids and matrices, de Gruyter Studies in Mathematics, 41, Walter de Gruyter Co., Berlin–Boston, 2011 | MR

[6] A. Ramin, A. Abbasi, “Torsion-unitary Cayley graph of an $R$-module as a Functor”, Quasigroups and Related Systems, 26 (2018), 121–138 | MR | Zbl

[7] L. R. Vermani, An Elementary Approach to Homological Algebra, Chapman Hall, New York, 2003 | MR | Zbl