@article{ADM_2019_28_1_a0,
author = {Ahmad Abbasi and Ali Ramin},
title = {Exact sequences of graphs},
journal = {Algebra and discrete mathematics},
pages = {1--19},
year = {2019},
volume = {28},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a0/}
}
Ahmad Abbasi; Ali Ramin. Exact sequences of graphs. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a0/
[1] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, 2001 | MR | Zbl
[2] G. Hahn, C. Tardif, “Graph homomorphisms: structure and symmetry”, Graph symmetry (Montreal, PQ, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 497, Kluwer Acad. Publ., Dordrecht, 1997, 107–166 | MR | Zbl
[3] R. Hammack, W. Imrich, S.Klavžar, Handbook of Product Graphs, 2nd ed., CRC Press: Taylor and Francis Group, 2011 | MR | Zbl
[4] M. Kilp and U. Knauer, “Graph operations and categorical constructions”, Acta Comment. Univ. Tartu, Mathematica, 5 (200), 43–57 | MR | Zbl
[5] U. Knauer, Algebraic Graph Theory. Morphisms, monoids and matrices, de Gruyter Studies in Mathematics, 41, Walter de Gruyter Co., Berlin–Boston, 2011 | MR
[6] A. Ramin, A. Abbasi, “Torsion-unitary Cayley graph of an $R$-module as a Functor”, Quasigroups and Related Systems, 26 (2018), 121–138 | MR | Zbl
[7] L. R. Vermani, An Elementary Approach to Homological Algebra, Chapman Hall, New York, 2003 | MR | Zbl