On the lattice of cyclic codes over finite chain rings
Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 252-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, $R$ is a finite chain ring of invariants $(q,s)$, and $\ell$ is a positive integer fulfilling $\operatorname{gcd}(\ell,q) = 1$. In the language of $q$-cyclotomic cosets modulo $\ell$, the cyclic codes over $R$ of length $\ell$ are uniquely decomposed into a direct sum of trace-representable cyclic codes over $R$ and the lattice of cyclic codes over $R$ of length $\ell$ is investigated.
Keywords: finite chain rings, cyclotomic cosets, linear code, trace map.
Mots-clés : cyclic code
@article{ADM_2019_27_2_a7,
     author = {Alexandre Fotue-Tabue and Christophe Mouaha},
     title = {On the lattice of cyclic codes over finite chain rings},
     journal = {Algebra and discrete mathematics},
     pages = {252--268},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a7/}
}
TY  - JOUR
AU  - Alexandre Fotue-Tabue
AU  - Christophe Mouaha
TI  - On the lattice of cyclic codes over finite chain rings
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 252
EP  - 268
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a7/
LA  - en
ID  - ADM_2019_27_2_a7
ER  - 
%0 Journal Article
%A Alexandre Fotue-Tabue
%A Christophe Mouaha
%T On the lattice of cyclic codes over finite chain rings
%J Algebra and discrete mathematics
%D 2019
%P 252-268
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a7/
%G en
%F ADM_2019_27_2_a7
Alexandre Fotue-Tabue; Christophe Mouaha. On the lattice of cyclic codes over finite chain rings. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 252-268. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a7/

[1] A. Batoul, K. Guenda, and T. A. Guelliver, “On the self-dual cyclic codes over finite chain rings”, Des. Codes Cryptogr., 70:1 (2014), 347–358 | DOI | Zbl

[2] J. Bierbrauer, “The Theory of Cyclic Codes and a Generalization to Additive Codes”, Des. Codes Cryptogr., 25:2 (2002), 189–206 | DOI | Zbl

[3] A. R. Calderbank and N. J. A. Sloane, “Modular and $p$-adic cyclic codes”, Des. Codes Cryptogr., 6:1 (1995), 21–35 | DOI | Zbl

[4] F. DeMeyer and E. Ingraham, Separable Algebras Over Commutative Rings, Springer, 1971 | Zbl

[5] H. Dinh and S. R. López-Permouth, “Cyclic and negacyclic codes over finite chain rings”, IEEE Trans. Inform. Theory, 50:8 (2004), 1728–1744 | DOI | Zbl

[6] A. Fotue Tabue and C. Mouaha, “A New Approach of Free Cyclic Linear Codes over Commutative Finite Chain Rings”, GJPAM, 9:5 (2013), 475–482

[7] G. Gratze, Lattices Theory: First Concepts and Distributive Lattices, Dover Publications, Inc., 2009

[8] T. Honold and I. Landjev, “Linear codes over finite chain rings”, Electron. J. Combinat., 7:1 (2000), R11 | DOI | Zbl

[9] H. Horimoto and K. Shiromoto, “On generalized Hamming weights for codes over finite chain rings”, Proceedings of the 14th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer-Verlag, Berlin–Heidelberg, 2001, 141–150 | DOI | Zbl

[10] P. Kanwar and S. R. López-Permouth, “Cyclic codes over the integer modulo $p^m$”, Finite Fields Appl., 3 (1997), 334–352 | DOI | Zbl

[11] E. Martinez-Moro, A. P. Nicolas and F. Rua, “On trace codes and Galois invariance over finite commutative chain rings”, Finite Fields Appl., 22 (2013), 114–121 | DOI | Zbl

[12] B. R. McDonald, Finite Rings with Identity, Marcel Dekker, New York, 1974 | Zbl

[13] G. H. Norton and A. Salagean, “On the Structure of Linear and Cyclic Codes over a Finite Chain Ring”, AAECC, 10 (2000), 489–506 | DOI | Zbl

[14] Z. Wan, “Cyclic codes over Galois rings”, Alg. Colloq., 6 (1999), 291–304 | Zbl

[15] F. J. McWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Math. Library, 16, North-Holland, Amsterdam, 1977