On the lattice of cyclic codes over finite chain rings
Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 252-268
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, $R$ is a finite chain ring of invariants $(q,s)$, and $\ell$ is a positive integer fulfilling $\operatorname{gcd}(\ell,q) = 1$. In the language of $q$-cyclotomic cosets modulo $\ell$, the cyclic codes over $R$ of length $\ell$ are uniquely decomposed into a direct sum of trace-representable cyclic codes over $R$ and the lattice of cyclic codes over $R$ of length $\ell$ is investigated.
Keywords:
finite chain rings, cyclotomic cosets, linear code, trace map.
Mots-clés : cyclic code
Mots-clés : cyclic code
@article{ADM_2019_27_2_a7,
author = {Alexandre Fotue-Tabue and Christophe Mouaha},
title = {On the lattice of cyclic codes over finite chain rings},
journal = {Algebra and discrete mathematics},
pages = {252--268},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a7/}
}
TY - JOUR AU - Alexandre Fotue-Tabue AU - Christophe Mouaha TI - On the lattice of cyclic codes over finite chain rings JO - Algebra and discrete mathematics PY - 2019 SP - 252 EP - 268 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a7/ LA - en ID - ADM_2019_27_2_a7 ER -
Alexandre Fotue-Tabue; Christophe Mouaha. On the lattice of cyclic codes over finite chain rings. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 252-268. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a7/