Globalizations for partial (co)actions on~coalgebras
Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 212-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the notion of globalization for partial module coalgebra and for partial comodule coalgebra. We show that every partial module coalgebra is globalizable exhibiting a standard globalization. We also show the existence of globalization for a partial comodule coalgebra, provided a certain rationality condition. Moreover, we show a relationship between the globalization for the (co)module coalgebra and the usual globalization for the (co)module algebra.
Keywords: Hopf algebras, partial action, globalization
Mots-clés : partial coaction, partial module coalgebra, partial comodule coalgebra.
@article{ADM_2019_27_2_a5,
     author = {Felipe Castro and Glauber Quadros},
     title = {Globalizations for partial (co)actions on~coalgebras},
     journal = {Algebra and discrete mathematics},
     pages = {212--242},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a5/}
}
TY  - JOUR
AU  - Felipe Castro
AU  - Glauber Quadros
TI  - Globalizations for partial (co)actions on~coalgebras
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 212
EP  - 242
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a5/
LA  - en
ID  - ADM_2019_27_2_a5
ER  - 
%0 Journal Article
%A Felipe Castro
%A Glauber Quadros
%T Globalizations for partial (co)actions on~coalgebras
%J Algebra and discrete mathematics
%D 2019
%P 212-242
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a5/
%G en
%F ADM_2019_27_2_a5
Felipe Castro; Glauber Quadros. Globalizations for partial (co)actions on~coalgebras. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 212-242. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a5/

[1] F. Abadie, “Enveloping actions and Takai duality for partial actions”, J. Funct. Anal., 197:1 (2003), 14–67 | DOI | Zbl

[2] M. Alves, E. Batista, “Partial Hopf actions, partial invariants and a Morita context”, Algebra Discrete Math., 3 (2009), 1–19 | Zbl

[3] M. Alves, E. Batista, “Enveloping actions for partial Hopf actions”, Comm. Algebra, 38:8 (2010), 2872–2902 | DOI | Zbl

[4] M. Alves, E. Batista, “Globalization theorems for partial Hopf (co)actions, and some of their applications”, Groups, Algebras and Applications, Contemp. Math., 537, Amer. Math. Soc., Providence, RI, 2011, 13–30 | DOI | Zbl

[5] E. Batista, J. Vercruysse, “Dual Constructions for Partial Actions of Hopf Algebras”, Journal of Pure and Applied Algebra, 220:2 (2016), 518–599 | DOI

[6] T. Brzezinski, R. Wisbauer, Corings and comodules, London Mathematical Society Lecture Note Series, 309, Cambridge University Press, Cambridge, 2003, xii+476 pp. | Zbl

[7] S. Caenepeel, K. Janssen, “Partial (co)actions of Hopf algebras and partial Hopf-Galois theory”, Comm. Algebra, 36:8 (2008), 2923–2946 | DOI | Zbl

[8] S. Chase, M. Sweedler, Hopf algebras and Galois theory, Lect. Notes in Math., 97, 1969 | DOI | Zbl

[9] S. Dăscălescu, C. Năstăsescu, Ş. Raianu, Hopf algebras: An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 235, Marcel Dekker, Inc., New York, 2001, x+401 pp.

[10] M. Dokuchaev, R. Exel, “Associativity of crossed products by partial actions, enveloping actions and partial representations”, Trans. Amer. Math. Soc., 357:5 (2005), 1931–1952 | DOI | Zbl

[11] M. Dokuchaev, M. Ferrero, A. Paques, “Partial actions and Galois theory”, J. Pure Appl. Algebra, 208:1 (2007), 77–87 | DOI | Zbl

[12] R. Exel, “Circle actions on $C^*$-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence”, J. Funct. Anal., 122:2 (1994), 361–401 | DOI | Zbl

[13] S. Montgomery, Hopf algebras and their actions on rings, Published for the Conference Board of the Mathematical Sciences (Washington, DC), CBMS Regional Conference Series in Mathematics, 82, American Mathematical Society, Providence, RI, 1993, xiv+238 pp. | DOI | Zbl

[14] D. Radford, Hopf algebras, Series on Knots and Everything, 49, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012, xxii+559 pp. | Zbl

[15] M. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969, vii+336 pp. | Zbl

[16] F. Van Oystaeyen, Y. Zhang, “Finite-dimensional Hopf algebras coacting on coalgebras”, Bull. Belg. Math. Soc. Simon Stevin, 5:1 (1998), 1–14 | Zbl