Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_27_2_a10, author = {Viktoriia S. Yashchuk}, title = {On some {Leibniz} algebras having small dimension}, journal = {Algebra and discrete mathematics}, pages = {292--308}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a10/} }
Viktoriia S. Yashchuk. On some Leibniz algebras having small dimension. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 292-308. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a10/
[1] S. Albeverio, B. A. Omirov, I. S. Rakhimov, “Varieties of nilpotent complex Leibniz algebras of dimension less than five”, Comm. Algebra, 33:5 (2005), 1575–1585 | DOI | Zbl
[2] S. A. Ayupov, B. A. Omirov, “On 3-dimensional Leibniz algebras”, Uzbek. Math. Zh., 1 (1999), 9–14
[3] D. Barnes, “Some theorems on Leibniz algebras”, Comm. Algebra, 39:7 (2011), 2463–2472 | DOI | Zbl
[4] D. Barnes, “Schunck Classes of soluble Leibniz algebras”, Comm. Algebra, 41:11 (2013), 4046–4065 | DOI | Zbl
[5] A. M. Bloh, “On a generalization of the concept of Lie algebra”, Dokl. Akad. Nauk SSSR, 165:3 (1965), 471–473
[6] A. M. Bloh, “Cartan-Eilenberg homology theory for a generalized class of Lie algebras”, Dokl. Akad. Nauk SSSR, 175:8 (1967), 824–826
[7] A. M. Bloh, “A certain generalization of the concept of Lie algebra”, Algebra and number theory. Moskov. Gos. Ped. Inst. Uchen. Zap., 375 (1971), 9–20
[8] J. M. Casas, M. A. Insua, M. Ladra, S. Ladra, “An algorithm for the classification of 3-dimensional complex Leibniz algebras”, Linear Algebra Appl., 436:9 (2012), 3747–3756 | DOI | Zbl
[9] V. A. Chupordya, L. A. Kurdachenko, I.Ya. Subbotin, “On some “minimal” Leibniz algebras”, J. Algebra Appl., 16:5 (2017), 1750082 | DOI
[10] I. Demir, K. C. Misra, E. Stitzinger, “On some structures of Leibniz algebras”, Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, Contemporary Mathematics, 623, 2014, 41–54 | DOI | Zbl
[11] N. Jacobson, Lie algebras, John Wiley, New York, 1962 | Zbl
[12] V. V. Kirichinko, L. A. Kurdachenko, A. A. Pypka, I.Ya. Subbotin, “Some aspects of Leibniz algebra theory”, Algebra Discrete Math., 24:1 (2017), 1–33
[13] L. A. Kurdachenko, J. Otal, A. A. Pypka, “Relationships between factors of canonical central series of Leibniz algebras”, Eur. J. Math., 2:2 (2016), 565–577 | DOI | Zbl
[14] L. A. Kurdachenko, N. N. Semko, I.Ya. Subbotin, “The Leibniz algebras whose subalgebras are ideals”, Open Math., 15:1 (2017), 92–100 | DOI | Zbl
[15] J.-L. Loday, “Une version non commutative des algèbres de Lie: les algèbras de Leibniz”, L'Enseignement Mathèmatique, 39 (1993), 269–293 | Zbl
[16] J.-L. Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, 2nd ed., Springer-Verlag, Berlin, 1998 | DOI | Zbl