On some Leibniz algebras having small dimension
Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 292-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first step in the study of all types of algebras is the description of such algebras having small dimensions. The structure of 3-dimensional Leibniz algebras is more complicated than 1- and 2-dimensional cases. In this paper, we consider the structure of Leibniz algebras of dimension 3 over the finite fields. In some cases, the structure of the algebra essentially depends on the characteristic of the field, in others on the solvability of specific equations in the field, and so on.
Keywords: Leibniz algebra, ideal, factor-algebra, Leibniz kernel, finite dimensional Leibniz algebra, nilpotent Leibniz algebra, left (right) center
Mots-clés : Frattini subalgebra.
@article{ADM_2019_27_2_a10,
     author = {Viktoriia S. Yashchuk},
     title = {On some {Leibniz} algebras having small dimension},
     journal = {Algebra and discrete mathematics},
     pages = {292--308},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a10/}
}
TY  - JOUR
AU  - Viktoriia S. Yashchuk
TI  - On some Leibniz algebras having small dimension
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 292
EP  - 308
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a10/
LA  - en
ID  - ADM_2019_27_2_a10
ER  - 
%0 Journal Article
%A Viktoriia S. Yashchuk
%T On some Leibniz algebras having small dimension
%J Algebra and discrete mathematics
%D 2019
%P 292-308
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a10/
%G en
%F ADM_2019_27_2_a10
Viktoriia S. Yashchuk. On some Leibniz algebras having small dimension. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 292-308. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a10/

[1] S. Albeverio, B. A. Omirov, I. S. Rakhimov, “Varieties of nilpotent complex Leibniz algebras of dimension less than five”, Comm. Algebra, 33:5 (2005), 1575–1585 | DOI | Zbl

[2] S. A. Ayupov, B. A. Omirov, “On 3-dimensional Leibniz algebras”, Uzbek. Math. Zh., 1 (1999), 9–14

[3] D. Barnes, “Some theorems on Leibniz algebras”, Comm. Algebra, 39:7 (2011), 2463–2472 | DOI | Zbl

[4] D. Barnes, “Schunck Classes of soluble Leibniz algebras”, Comm. Algebra, 41:11 (2013), 4046–4065 | DOI | Zbl

[5] A. M. Bloh, “On a generalization of the concept of Lie algebra”, Dokl. Akad. Nauk SSSR, 165:3 (1965), 471–473

[6] A. M. Bloh, “Cartan-Eilenberg homology theory for a generalized class of Lie algebras”, Dokl. Akad. Nauk SSSR, 175:8 (1967), 824–826

[7] A. M. Bloh, “A certain generalization of the concept of Lie algebra”, Algebra and number theory. Moskov. Gos. Ped. Inst. Uchen. Zap., 375 (1971), 9–20

[8] J. M. Casas, M. A. Insua, M. Ladra, S. Ladra, “An algorithm for the classification of 3-dimensional complex Leibniz algebras”, Linear Algebra Appl., 436:9 (2012), 3747–3756 | DOI | Zbl

[9] V. A. Chupordya, L. A. Kurdachenko, I.Ya. Subbotin, “On some “minimal” Leibniz algebras”, J. Algebra Appl., 16:5 (2017), 1750082 | DOI

[10] I. Demir, K. C. Misra, E. Stitzinger, “On some structures of Leibniz algebras”, Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, Contemporary Mathematics, 623, 2014, 41–54 | DOI | Zbl

[11] N. Jacobson, Lie algebras, John Wiley, New York, 1962 | Zbl

[12] V. V. Kirichinko, L. A. Kurdachenko, A. A. Pypka, I.Ya. Subbotin, “Some aspects of Leibniz algebra theory”, Algebra Discrete Math., 24:1 (2017), 1–33

[13] L. A. Kurdachenko, J. Otal, A. A. Pypka, “Relationships between factors of canonical central series of Leibniz algebras”, Eur. J. Math., 2:2 (2016), 565–577 | DOI | Zbl

[14] L. A. Kurdachenko, N. N. Semko, I.Ya. Subbotin, “The Leibniz algebras whose subalgebras are ideals”, Open Math., 15:1 (2017), 92–100 | DOI | Zbl

[15] J.-L. Loday, “Une version non commutative des algèbres de Lie: les algèbras de Leibniz”, L'Enseignement Mathèmatique, 39 (1993), 269–293 | Zbl

[16] J.-L. Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, 2nd ed., Springer-Verlag, Berlin, 1998 | DOI | Zbl