A family of doubly stochastic matrices involving Chebyshev polynomials
Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 155-164
Voir la notice de l'article provenant de la source Math-Net.Ru
A doubly stochastic matrix is a square matrix $A=(a_{ij})$ of non-negative real numbers such that $\sum_{i}a_{ij}=\sum_{j}a_{ij}=1$. The Chebyshev polynomial of the first kind is defined by the recurrence relation $T_0(x)=1$, $T_1(x)=x$, and
$$
T_{n+1}(x)=2xT_n(x)-T_{n-1}(x).
$$ In this paper, we show a $2^k\times 2^k$ (for each integer $k\geq 1$) doubly stochastic matrix whose characteristic polynomial is $x^2-1$ times a product of irreducible Chebyshev polynomials of the first kind (up to rescaling by rational numbers).
Keywords:
doubly stochastic matrices, Chebyshev polynomials.
@article{ADM_2019_27_2_a1,
author = {Tanbir Ahmed and Jos\'e M. R. Caballero},
title = {A family of doubly stochastic matrices involving {Chebyshev} polynomials},
journal = {Algebra and discrete mathematics},
pages = {155--164},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a1/}
}
TY - JOUR AU - Tanbir Ahmed AU - José M. R. Caballero TI - A family of doubly stochastic matrices involving Chebyshev polynomials JO - Algebra and discrete mathematics PY - 2019 SP - 155 EP - 164 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a1/ LA - en ID - ADM_2019_27_2_a1 ER -
Tanbir Ahmed; José M. R. Caballero. A family of doubly stochastic matrices involving Chebyshev polynomials. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 155-164. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a1/