On free vector balleans
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 70-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

A vector balleans is a vector space over $\mathbb{R}$ endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean $(X, \mathcal{E})$, there exists the unique free vector ballean $\mathbb{V}(X, \mathcal{E})$ and describe the coarse structure of $\mathbb{V}(X, \mathcal{E})$. It is shown that normality of $\mathbb{V}(X, \mathcal{E})$ is equivalent to metrizability of $(X, \mathcal{E})$.
Keywords: coarse structure, ballean, vector ballean, free vector ballean.
@article{ADM_2019_27_1_a7,
     author = {Igor Protasov and Ksenia Protasova},
     title = {On free vector balleans},
     journal = {Algebra and discrete mathematics},
     pages = {70--74},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a7/}
}
TY  - JOUR
AU  - Igor Protasov
AU  - Ksenia Protasova
TI  - On free vector balleans
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 70
EP  - 74
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a7/
LA  - en
ID  - ADM_2019_27_1_a7
ER  - 
%0 Journal Article
%A Igor Protasov
%A Ksenia Protasova
%T On free vector balleans
%J Algebra and discrete mathematics
%D 2019
%P 70-74
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a7/
%G en
%F ADM_2019_27_1_a7
Igor Protasov; Ksenia Protasova. On free vector balleans. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 70-74. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a7/

[1] T. Banakh, A. Leiderman, “$\omega^{\omega} $-dominated function spaces and $\omega^{\omega}$-bases in free objects in topological algebra”, Topology Appl., 241 (2018), 203–241 | DOI | MR | Zbl

[2] T. Banakh, I. Protasov, The normality and bounded growth of balleans, arXiv: 1810.07979

[3] S. S. Gabriyelyan, A description of the topology of free vector spaces, arXiv: 1804.05199

[4] S. S. Gabriyelyan, S. A. Morris, “Free topological vector space”, Topology Appl., 223 (2017), 30–49 | DOI | MR | Zbl

[5] Ie. Lutsenko, I. V. Protasov, “Sketch of vector balleans”, Math. Stud., 31 (2009), 219–224 | MR | Zbl

[6] Amer. Math. Soc. Transl., 30 (1950), 11–88 | MR

[7] I. V. Protasov, “Normal ball structures”, Math. Stud., 20 (2003), 3–16 | MR | Zbl

[8] I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., 11, VNTL, Lviv, 2003 | MR | Zbl

[9] I. Protasov, K. Protasova, “Free coarse groups”, J. Group Theory | DOI | MR

[10] I. Protasov, M. Zarichnyi, General Asymptopogy, Math. Stud. Monogr., 12, VNTL, Lviv, 2007 | MR

[11] J. Roe, Lectures on Coarse Geometry, AMS University Lecture Ser., 31, Providence, RI, 2003 | DOI | MR | Zbl