Conjugacy in finite state wreath powers of finite permutation groups
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 58-69
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that conjugated periodic elements of the infinite wreath power of a finite permutation group are conjugated in the finite state wreath power of this group. Counter-examples for non-periodic elements are given.
Keywords:
wreath power, automorphism of a rooted tree
Mots-clés : permutation group, conjugacy.
Mots-clés : permutation group, conjugacy.
@article{ADM_2019_27_1_a6,
author = {Andriy Oliynyk and Andriy Russyev},
title = {Conjugacy in finite state wreath powers of finite permutation groups},
journal = {Algebra and discrete mathematics},
pages = {58--69},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a6/}
}
TY - JOUR AU - Andriy Oliynyk AU - Andriy Russyev TI - Conjugacy in finite state wreath powers of finite permutation groups JO - Algebra and discrete mathematics PY - 2019 SP - 58 EP - 69 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a6/ LA - en ID - ADM_2019_27_1_a6 ER -
Andriy Oliynyk; Andriy Russyev. Conjugacy in finite state wreath powers of finite permutation groups. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 58-69. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a6/