Conjugacy in finite state wreath powers of finite permutation groups
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 58-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that conjugated periodic elements of the infinite wreath power of a finite permutation group are conjugated in the finite state wreath power of this group. Counter-examples for non-periodic elements are given.
Keywords: wreath power, automorphism of a rooted tree
Mots-clés : permutation group, conjugacy.
@article{ADM_2019_27_1_a6,
     author = {Andriy Oliynyk and Andriy Russyev},
     title = {Conjugacy in finite state wreath powers of finite permutation groups},
     journal = {Algebra and discrete mathematics},
     pages = {58--69},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a6/}
}
TY  - JOUR
AU  - Andriy Oliynyk
AU  - Andriy Russyev
TI  - Conjugacy in finite state wreath powers of finite permutation groups
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 58
EP  - 69
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a6/
LA  - en
ID  - ADM_2019_27_1_a6
ER  - 
%0 Journal Article
%A Andriy Oliynyk
%A Andriy Russyev
%T Conjugacy in finite state wreath powers of finite permutation groups
%J Algebra and discrete mathematics
%D 2019
%P 58-69
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a6/
%G en
%F ADM_2019_27_1_a6
Andriy Oliynyk; Andriy Russyev. Conjugacy in finite state wreath powers of finite permutation groups. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 58-69. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a6/

[1] P. W. Gawron, V. V. Nekrashevych, V. I. Sushchansky, “Conjugation in tree automorphism groups”, International Journal of Algebra and Computation, 11:5 (2001), 529–547 | DOI | MR | Zbl

[2] R. I. Grigorchuk, V. V. Nekrashevych, V. I. Sushchansky, “Automata, Dynamical Systems, and Groups”, Proceedings of the Steklov Institute of Mathematics, 231, 2000, 128–203 | MR | Zbl

[3] A. V. Russev, “On conjugacy in groups of finite-state automorphisms of rooted trees”, Ukrainian Mathematical Journal, 60:10 (2008), 1581–1591 | DOI | MR | Zbl

[4] I. V. Bondarenko, N. V. Bondarenko, S. N. Sidki, F. R. Zapata, “On the conjugacy problem for finite-state automorphisms of regular rooted trees”, with an appendix by Raphaël M. Jungers, Groups, Geometry, and Dynamics, 7, 2013, 323–355 | DOI | MR | Zbl

[5] A. Oliynyk, “Finite state wreath powers of transformation semigroups”, Semigroup Forum, 82 (2011), 423–436 | DOI | MR | Zbl

[6] Y. Lavrenyuk, “The group of all finite-state automorphisms of a regular rooted tree has a minimal generating set”, Geometriae Dedicata, 183:1 (2016), 59–67 | DOI | MR | Zbl