The lattice of quasivarietes of modules over a~Dedekind ring
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 37-49
Voir la notice de l'article provenant de la source Math-Net.Ru
In 1995 D. V. Belkin described the lattice of quasivarieties of modules over principal ideal domains [1]. The following paper provides a description of the lattice of subquasivarieties of the variety of modules over a given Dedekind ring. It also shows which subvarieties of these modules are deductive (a variety is deductive if every subquasivariety is a variety).
Keywords:
quasivarieties, lattices, Dedekind rings.
Mots-clés : modules
Mots-clés : modules
@article{ADM_2019_27_1_a4,
author = {P\v{r}emysl Jedli\v{c}ka and Katarzyna Matczak and Anna Mu\'cka},
title = {The lattice of quasivarietes of modules over {a~Dedekind} ring},
journal = {Algebra and discrete mathematics},
pages = {37--49},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a4/}
}
TY - JOUR AU - Přemysl Jedlička AU - Katarzyna Matczak AU - Anna Mućka TI - The lattice of quasivarietes of modules over a~Dedekind ring JO - Algebra and discrete mathematics PY - 2019 SP - 37 EP - 49 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a4/ LA - en ID - ADM_2019_27_1_a4 ER -
Přemysl Jedlička; Katarzyna Matczak; Anna Mućka. The lattice of quasivarietes of modules over a~Dedekind ring. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 37-49. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a4/