The lattice of quasivarietes of modules over a~Dedekind ring
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 37-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1995 D. V. Belkin described the lattice of quasivarieties of modules over principal ideal domains [1]. The following paper provides a description of the lattice of subquasivarieties of the variety of modules over a given Dedekind ring. It also shows which subvarieties of these modules are deductive (a variety is deductive if every subquasivariety is a variety).
Keywords: quasivarieties, lattices, Dedekind rings.
Mots-clés : modules
@article{ADM_2019_27_1_a4,
     author = {P\v{r}emysl Jedli\v{c}ka and Katarzyna Matczak and Anna Mu\'cka},
     title = {The lattice of quasivarietes of modules over {a~Dedekind} ring},
     journal = {Algebra and discrete mathematics},
     pages = {37--49},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a4/}
}
TY  - JOUR
AU  - Přemysl Jedlička
AU  - Katarzyna Matczak
AU  - Anna Mućka
TI  - The lattice of quasivarietes of modules over a~Dedekind ring
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 37
EP  - 49
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a4/
LA  - en
ID  - ADM_2019_27_1_a4
ER  - 
%0 Journal Article
%A Přemysl Jedlička
%A Katarzyna Matczak
%A Anna Mućka
%T The lattice of quasivarietes of modules over a~Dedekind ring
%J Algebra and discrete mathematics
%D 2019
%P 37-49
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a4/
%G en
%F ADM_2019_27_1_a4
Přemysl Jedlička; Katarzyna Matczak; Anna Mućka. The lattice of quasivarietes of modules over a~Dedekind ring. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 37-49. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a4/

[1] D. V. Belkin, Constructing Lattices of Quasivarieties of Modules, Ph.D. Thesis, Novosibirsk State University, Novosibirsk, Russia, 1995 (in Russian)

[2] C. Bergman and A. Romanowska, “Subquasivarieties of regularized varieties”, Algebra Universalis, 36 (1996), 536–563 | DOI | MR | Zbl

[3] V. A. Gorbunov, Algebraic Theory of Quasivarieties, Consultants Bureau, New York, 1998 | MR | Zbl

[4] L. Hogben and C. Bergman, “Deductive varieties of modules and universal algebras,”, Trans. Amer. Math. Soc., 289 (1985), 303–320 | DOI | MR | Zbl

[5] A. I. Mal'cev, Algebraic Systems, Springer-Verlag, Berlin, 1973

[6] K. Matczak and A. Romanowska, “Quasivarieties of cancellative commutative binary modes”, Studia Logica, 78 (2004), 321–335 | DOI | MR | Zbl

[7] K. Matczak and A. Romanowska, “Irregular quasivarieties of commutative binary modes”, International Journal of Algebra and Computation, 15 (2005), 699–715 | DOI | MR | Zbl

[8] R. N. McKenzie, G. F. McNulty and W. F. Taylor, Algebra, Lattices, Varieties, v. I, Wadsworth, Monterey, 1987 | MR

[9] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer Monographs in Mathematics, Springer, 2004 | DOI | MR | Zbl

[10] A. B. Romanowska and J. D. H. Smith, Modes, World Scientific, Singapore, 2002 | MR | Zbl

[11] W. Stephenson, “Modules Whose Lattice of Submodules is Distributive”, Proc. London Math. Soc. (3), 28:2 (1974), 291–310 | DOI | MR | Zbl

[12] K. Toyoda, “On axioms of linear functions”, Proc. Imp. Acad. Tokyo, 17 (1941), 221–227 | MR | Zbl

[13] A. A. Vinogradov, “Quasivarieties of abelian groups”, Algebra i Logika, 4 (1965), 15–19 (Russian) | MR | Zbl

[14] O. Zariski, P. Samuel, Commutative algebra, v. I, Springer-Verlag, Berlin, 1975 | MR | Zbl