The lattice of quasivarietes of modules over a~Dedekind ring
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 37-49

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1995 D. V. Belkin described the lattice of quasivarieties of modules over principal ideal domains [1]. The following paper provides a description of the lattice of subquasivarieties of the variety of modules over a given Dedekind ring. It also shows which subvarieties of these modules are deductive (a variety is deductive if every subquasivariety is a variety).
Keywords: quasivarieties, lattices, Dedekind rings.
Mots-clés : modules
@article{ADM_2019_27_1_a4,
     author = {P\v{r}emysl Jedli\v{c}ka and Katarzyna Matczak and Anna Mu\'cka},
     title = {The lattice of quasivarietes of modules over {a~Dedekind} ring},
     journal = {Algebra and discrete mathematics},
     pages = {37--49},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a4/}
}
TY  - JOUR
AU  - Přemysl Jedlička
AU  - Katarzyna Matczak
AU  - Anna Mućka
TI  - The lattice of quasivarietes of modules over a~Dedekind ring
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 37
EP  - 49
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a4/
LA  - en
ID  - ADM_2019_27_1_a4
ER  - 
%0 Journal Article
%A Přemysl Jedlička
%A Katarzyna Matczak
%A Anna Mućka
%T The lattice of quasivarietes of modules over a~Dedekind ring
%J Algebra and discrete mathematics
%D 2019
%P 37-49
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a4/
%G en
%F ADM_2019_27_1_a4
Přemysl Jedlička; Katarzyna Matczak; Anna Mućka. The lattice of quasivarietes of modules over a~Dedekind ring. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 37-49. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a4/