Mots-clés : partial automorphism, random matrix
@article{ADM_2018_26_2_a6,
author = {Eugenia Kochubinska},
title = {Spectral properties of partial automorphisms of~a~binary rooted tree},
journal = {Algebra and discrete mathematics},
pages = {280--289},
year = {2018},
volume = {26},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a6/}
}
Eugenia Kochubinska. Spectral properties of partial automorphisms of a binary rooted tree. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 280-289. http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a6/
[1] L. Bartholdi, R. Grigorchuk, “On the Hecke type operators related to some fractal groups”, Proc. Steklov Inst. Math., 231 (2000), 1–41 | MR | Zbl
[2] S. N. Evans, “Eigenvaluse of random wreath products”, Electron. J. Probability, 7:9 (2002), 1–15 | MR
[3] O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups. An Introduction, Springer, 2008 | MR
[4] E. Kochubinska, “Combinatorics of partial wreath power of finite inverse symmetric semigroup $\mathcal{IS}_d$”, Algebra Discrete Math., 6:1 (2007), 49–61 | MR
[5] E. Kochubinska, “On cross-sections of partial wreath product of inverse semigroups”, Electron. Notes Discrete Math., 28 (2007), 379–386 | DOI | MR | Zbl
[6] J. D. P. Meldrum, Wreath product of groups and semigroups, Pitman Monographs and Surveys in Pure and Applied Mathematics, 74, Longman Group Ltd., Harlow, 1995 | MR