On finite groups with Hall normally embedded Schmidt subgroups
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 90-96

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a finite group $G$ is said to be Hall normally embedded in $G$ if there is a normal subgroup $N$ of $G$ such that $H$ is a Hall subgroup of $N$. A Schmidt group is a non-nilpotent finite group whose all proper subgroups are nilpotent. In this paper, we prove that if each Schmidt subgroup of a finite group $G$ is Hall normally embedded in $G$, then the derived subgroup of $G$ is nilpotent.
Keywords: finite group, Hall subgroup, normal subgroup, derived subgroup, nilpotent subgroup.
@article{ADM_2018_26_1_a8,
     author = {Viktoryia N. Knyahina and Victor S. Monakhov},
     title = {On finite groups with {Hall} normally embedded {Schmidt} subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {90--96},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a8/}
}
TY  - JOUR
AU  - Viktoryia N. Knyahina
AU  - Victor S. Monakhov
TI  - On finite groups with Hall normally embedded Schmidt subgroups
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 90
EP  - 96
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a8/
LA  - en
ID  - ADM_2018_26_1_a8
ER  - 
%0 Journal Article
%A Viktoryia N. Knyahina
%A Victor S. Monakhov
%T On finite groups with Hall normally embedded Schmidt subgroups
%J Algebra and discrete mathematics
%D 2018
%P 90-96
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a8/
%G en
%F ADM_2018_26_1_a8
Viktoryia N. Knyahina; Victor S. Monakhov. On finite groups with Hall normally embedded Schmidt subgroups. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 90-96. http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a8/