On regular torsionless $S$-posets
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 76-89

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper shall be concerned with the notion of regular torsionless in the category of $S$-posets. Besides elementary basic properties of regular torsionless $S$-posets, we consider cyclic regular torsionless $S$-posets and also study when regular torsionless property is preserved under coproducts. Then we characterize pomonoids over which all free or projective $S$-posets are regular torsionless. Finally, we present conditions on $S$ which follow if all regular torsionless $S$-posets are principally weakly po-flat, weakly po-flat, strongly flat, or projective.
Keywords: $S$-posets, pomonoids, regular torsionless, projective, flat.
@article{ADM_2018_26_1_a7,
     author = {Roghaieh Khosravi},
     title = {On regular torsionless $S$-posets},
     journal = {Algebra and discrete mathematics},
     pages = {76--89},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a7/}
}
TY  - JOUR
AU  - Roghaieh Khosravi
TI  - On regular torsionless $S$-posets
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 76
EP  - 89
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a7/
LA  - en
ID  - ADM_2018_26_1_a7
ER  - 
%0 Journal Article
%A Roghaieh Khosravi
%T On regular torsionless $S$-posets
%J Algebra and discrete mathematics
%D 2018
%P 76-89
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a7/
%G en
%F ADM_2018_26_1_a7
Roghaieh Khosravi. On regular torsionless $S$-posets. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 76-89. http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a7/