Cancellable elements of the lattice of~semigroup~varieties
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 34-46

Voir la notice de l'article provenant de la source Math-Net.Ru

We completely determine all commutative semigroup varieties that are cancellable elements of the lattice SEM of all semigroup varieties. In particular, we verify that a commutative semigroup variety is a cancellable element of the lattice SEM if and only if it is a modular element of this lattice.
Keywords: semigroup, variety, cancellable element of a lattice, modular element of a lattice.
@article{ADM_2018_26_1_a4,
     author = {Sergey V. Gusev and Dmitry V. Skokov and Boris M. Vernikov},
     title = {Cancellable elements of the lattice of~semigroup~varieties},
     journal = {Algebra and discrete mathematics},
     pages = {34--46},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a4/}
}
TY  - JOUR
AU  - Sergey V. Gusev
AU  - Dmitry V. Skokov
AU  - Boris M. Vernikov
TI  - Cancellable elements of the lattice of~semigroup~varieties
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 34
EP  - 46
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a4/
LA  - en
ID  - ADM_2018_26_1_a4
ER  - 
%0 Journal Article
%A Sergey V. Gusev
%A Dmitry V. Skokov
%A Boris M. Vernikov
%T Cancellable elements of the lattice of~semigroup~varieties
%J Algebra and discrete mathematics
%D 2018
%P 34-46
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a4/
%G en
%F ADM_2018_26_1_a4
Sergey V. Gusev; Dmitry V. Skokov; Boris M. Vernikov. Cancellable elements of the lattice of~semigroup~varieties. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 34-46. http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a4/