Orthosymplectic Jordan superalgebras and~the~Wedderburn principal theorem
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 19-33

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the Wedderburn Principal Theorem (WPT) is considered for finite-dimensional Jordan superalgebras $\mathcal{A}$ with solvable radical $\mathcal{N}$, $\mathcal{N}^2=0$, and such that $\mathcal{A}/\mathcal{N}\cong\mathfrak{J}\mathrm{osp}_{n|2m}(\mathbb{F})$, where $\mathbb{F}$ is a field of characteristic zero. We prove that the WPT is valid under some restrictions over the irreducible $\mathcal{A}/\mathcal{N}\cong\mathfrak{J}\mathrm{osp}_{n|2m}(\mathbb{F})$-bimodules contained in $\mathcal{N}$, and show with counter-examples that these restrictions cannot be weakened.
Keywords: Jordan superalgebras, Wedderburn theorem.
@article{ADM_2018_26_1_a3,
     author = {F. A. G\'omez Gonz\'alez and R. Vel\'asquez},
     title = {Orthosymplectic {Jordan} superalgebras {and~the~Wedderburn} principal theorem},
     journal = {Algebra and discrete mathematics},
     pages = {19--33},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a3/}
}
TY  - JOUR
AU  - F. A. Gómez González
AU  - R. Velásquez
TI  - Orthosymplectic Jordan superalgebras and~the~Wedderburn principal theorem
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 19
EP  - 33
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a3/
LA  - en
ID  - ADM_2018_26_1_a3
ER  - 
%0 Journal Article
%A F. A. Gómez González
%A R. Velásquez
%T Orthosymplectic Jordan superalgebras and~the~Wedderburn principal theorem
%J Algebra and discrete mathematics
%D 2018
%P 19-33
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a3/
%G en
%F ADM_2018_26_1_a3
F. A. Gómez González; R. Velásquez. Orthosymplectic Jordan superalgebras and~the~Wedderburn principal theorem. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 19-33. http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a3/