Some more algebra on ultrafilters in~metric~spaces
Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 286-293

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue algebraization of the set of ultrafilters on a metric spaces initiated in [6]. In particular, we define and study metric counterparts of prime, strongly prime and right cancellable ultrafilters from the Stone-Čech compactification of a discrete group as a right topological semigroup [3]. Our approach is based on the concept of parallelity introduced in the context of balleans in [4].
Keywords: metric space, ultrafilter, ball invariance, parallelity, prime and strongly prime ultrafilters.
@article{ADM_2018_25_2_a7,
     author = {Igor Protasov},
     title = {Some more algebra on ultrafilters in~metric~spaces},
     journal = {Algebra and discrete mathematics},
     pages = {286--293},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a7/}
}
TY  - JOUR
AU  - Igor Protasov
TI  - Some more algebra on ultrafilters in~metric~spaces
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 286
EP  - 293
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a7/
LA  - en
ID  - ADM_2018_25_2_a7
ER  - 
%0 Journal Article
%A Igor Protasov
%T Some more algebra on ultrafilters in~metric~spaces
%J Algebra and discrete mathematics
%D 2018
%P 286-293
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a7/
%G en
%F ADM_2018_25_2_a7
Igor Protasov. Some more algebra on ultrafilters in~metric~spaces. Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 286-293. http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a7/