On certain homological invariant and its relation with Poincar\'{e} duality pairs
Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 177-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group, $\mathcal{S} = \{ S_i, i \in I\}$ a non empty family of (not necessarily distinct) subgroups of infinite index in $G$ and $M$ a $\mathbb{Z}_2 G$-module. In [4] the authors defined a homological invariant $E_*(G, \mathcal{S}, M),$ which is “dual” to the cohomological invariant $E(G, \mathcal{S}, M)$, defined in [1]. In this paper we present a more general treatment of the invariant $E_*(G, \mathcal{S}, M)$ obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant $E(G, \mathcal{S}, M)$. We analyze, through the invariant $E_{*}(G, S,M)$, properties about groups that satisfy certain finiteness conditions such as Poincaré duality for groups and pairs.
Keywords: (co)homology of groups, duality groups, duality pairs
Mots-clés : homological invariant.
@article{ADM_2018_25_2_a1,
     author = {Maria Gorete Carreira Andrade and Amanda Buosi Gazon and Amanda Ferreira de Lima},
     title = {On certain homological invariant and its relation with {Poincar\'{e}} duality pairs},
     journal = {Algebra and discrete mathematics},
     pages = {177--187},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a1/}
}
TY  - JOUR
AU  - Maria Gorete Carreira Andrade
AU  - Amanda Buosi Gazon
AU  - Amanda Ferreira de Lima
TI  - On certain homological invariant and its relation with Poincar\'{e} duality pairs
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 177
EP  - 187
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a1/
LA  - en
ID  - ADM_2018_25_2_a1
ER  - 
%0 Journal Article
%A Maria Gorete Carreira Andrade
%A Amanda Buosi Gazon
%A Amanda Ferreira de Lima
%T On certain homological invariant and its relation with Poincar\'{e} duality pairs
%J Algebra and discrete mathematics
%D 2018
%P 177-187
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a1/
%G en
%F ADM_2018_25_2_a1
Maria Gorete Carreira Andrade; Amanda Buosi Gazon; Amanda Ferreira de Lima. On certain homological invariant and its relation with Poincar\'{e} duality pairs. Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 177-187. http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a1/

[1] M. G. C. Andrade, E. L. C. Fanti, “A relative cohomological invariant for pairs of groups”, Manuscripta Math., 83 (1994), 1–18 | DOI | MR | Zbl

[2] M. G. C. Andrade, E. L. C. Fanti and J. A. Daccach, “On certain relative cohomological invariant”, International Journal of Pure and Applied Mathematics, 21 (2005), 335–351 | MR | Zbl

[3] M. G. C. Andrade, E. L. C. Fanti, “A note about splittings of groups and commensurability under a cohomological point of view”, Algebra and Discrete Mathematics, 9:2 (2010), 1–10 | MR

[4] M. G. C. Andrade, A. B. Gazon, “A dual homological invariant and some properties”, International Journal of Applied Mathematics, 27:1 (2014), 13–20 | MR | Zbl

[5] R. Bieri, Homological Dimension of Discrete Groups, Queen Mary College Math. Notes, Londres, 1976 | MR | Zbl

[6] R. Bieri, B. Eckmann, “Relative homology and Poincaré duality for Group Pairs”, Journal of Pure and Applied Algebra, 13 (1978), 277–319 | DOI | MR | Zbl

[7] K. S. Brown, Cohomology of Groups, Springer-Verlag, New York, 1982 | MR | Zbl