Closure operators in modules and adjoint functors, I
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 98-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present work the relations between the closure operators of two module categories are investigated in the case when the given categories are connected by two covariant adjoint functors $H\colon R\text{-}\operatorname{Mod}\longrightarrow S\text{-}\operatorname{Mod}$ and $T\colon S\text{-}\operatorname{Mod} \longrightarrow R\text{-}\operatorname{Mod}$. Two mappings are defined which ensure the transition between the closure operators of categories $R\text{-}\operatorname{Mod}$ and $S\text{-}\operatorname{Mod}$. Some important properties of these mappings are proved. It is shown that the studied mappings are compatible with the order relations and with the main operations.
Keywords: category of modules, closure operator, adjoint functors, lattice operations.
@article{ADM_2018_25_1_a7,
     author = {A. I. Kashu},
     title = {Closure operators in modules and adjoint {functors,~I}},
     journal = {Algebra and discrete mathematics},
     pages = {98--117},
     year = {2018},
     volume = {25},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a7/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - Closure operators in modules and adjoint functors, I
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 98
EP  - 117
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a7/
LA  - en
ID  - ADM_2018_25_1_a7
ER  - 
%0 Journal Article
%A A. I. Kashu
%T Closure operators in modules and adjoint functors, I
%J Algebra and discrete mathematics
%D 2018
%P 98-117
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a7/
%G en
%F ADM_2018_25_1_a7
A. I. Kashu. Closure operators in modules and adjoint functors, I. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 98-117. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a7/

[1] L. Bican, P. Jambor, T. Kepka, P. Nemec, “Preradicals and change of rings”, Comment. Math. Carolinae, 16:2 (1975), 201–217 | MR | Zbl

[2] A. I. Kashu, “Preradicals in adjoint situation”, Mat. Issled., 48 (1978), 48–64 (Russian) | MR | Zbl

[3] A. I. Kashu, “On correspondence of preradicals and torsions in adjoint situation”, Mat. Issled., 56 (1980), 62–84 (Russian) | MR | Zbl

[4] A. I. Kashu, Radicals and torsions in modules, Ştiinţa, Kishinev, 1983 (Russian) | MR

[5] A. I. Kashu, Radicals of modules and adjoint functors, preprint, Academy of Sciences of MSSR, Institute of Mathematics, Kishinev, 1984 (Russian) | MR

[6] A. I. Kashu, Functors and torsions in categories of modules, Academy of Sciences of RM, Institute of Mathematics, Kishinev, 1997 (Russian) | MR

[7] D. Dikranjan, E. Giuli, “Factorizations, injectivity and compactness in categories of modules”, Commun. in Algebra, 19:1 (1991), 45–83 | DOI | MR | Zbl

[8] D. Dikranjan, E. Giuli, “Closure operators I”, Topology and its applications, 27 (1987), 129–143 | DOI | MR | Zbl

[9] D. Dikranjan, W. Tholen, Categorical structure of closure operators, Kluwer Academic Publishers, 1995 | MR | Zbl

[10] A. I. Kashu, “Closure operators in the categories of modules, Part I”, Algebra Discrete Math., 15:2 (2013), 213–228 | MR | Zbl

[11] A. I. Kashu, “Closure operators in the categories of modules, Part II”, Algebra Discrete Math., 16:1 (2013), 81–95 | MR | Zbl

[12] A. I. Kashu, “Closure operators in the categories of modules, Part III”, Bulet. Acad. Şt. RM, Matematica, 2014, no. 1(74), 90–100 | MR | Zbl

[13] A. I. Kashu, “Closure operators in the categories of modules, Part IV”, Bulet. Acad. Şt. RM, Matematica, 2014, no. 3(76), 13–22 | MR | Zbl