Closure operators in modules and adjoint functors,~I
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 98-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work the relations between the closure operators of two module categories are investigated in the case when the given categories are connected by two covariant adjoint functors $H\colon R\text{-}\operatorname{Mod}\longrightarrow S\text{-}\operatorname{Mod}$ and $T\colon S\text{-}\operatorname{Mod} \longrightarrow R\text{-}\operatorname{Mod}$. Two mappings are defined which ensure the transition between the closure operators of categories $R\text{-}\operatorname{Mod}$ and $S\text{-}\operatorname{Mod}$. Some important properties of these mappings are proved. It is shown that the studied mappings are compatible with the order relations and with the main operations.
Keywords: category of modules, closure operator, adjoint functors, lattice operations.
@article{ADM_2018_25_1_a7,
     author = {A. I. Kashu},
     title = {Closure operators in modules and adjoint {functors,~I}},
     journal = {Algebra and discrete mathematics},
     pages = {98--117},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a7/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - Closure operators in modules and adjoint functors,~I
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 98
EP  - 117
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a7/
LA  - en
ID  - ADM_2018_25_1_a7
ER  - 
%0 Journal Article
%A A. I. Kashu
%T Closure operators in modules and adjoint functors,~I
%J Algebra and discrete mathematics
%D 2018
%P 98-117
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a7/
%G en
%F ADM_2018_25_1_a7
A. I. Kashu. Closure operators in modules and adjoint functors,~I. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 98-117. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a7/

[1] L. Bican, P. Jambor, T. Kepka, P. Nemec, “Preradicals and change of rings”, Comment. Math. Carolinae, 16:2 (1975), 201–217 | MR | Zbl

[2] A. I. Kashu, “Preradicals in adjoint situation”, Mat. Issled., 48 (1978), 48–64 (Russian) | MR | Zbl

[3] A. I. Kashu, “On correspondence of preradicals and torsions in adjoint situation”, Mat. Issled., 56 (1980), 62–84 (Russian) | MR | Zbl

[4] A. I. Kashu, Radicals and torsions in modules, Ştiinţa, Kishinev, 1983 (Russian) | MR

[5] A. I. Kashu, Radicals of modules and adjoint functors, preprint, Academy of Sciences of MSSR, Institute of Mathematics, Kishinev, 1984 (Russian) | MR

[6] A. I. Kashu, Functors and torsions in categories of modules, Academy of Sciences of RM, Institute of Mathematics, Kishinev, 1997 (Russian) | MR

[7] D. Dikranjan, E. Giuli, “Factorizations, injectivity and compactness in categories of modules”, Commun. in Algebra, 19:1 (1991), 45–83 | DOI | MR | Zbl

[8] D. Dikranjan, E. Giuli, “Closure operators I”, Topology and its applications, 27 (1987), 129–143 | DOI | MR | Zbl

[9] D. Dikranjan, W. Tholen, Categorical structure of closure operators, Kluwer Academic Publishers, 1995 | MR | Zbl

[10] A. I. Kashu, “Closure operators in the categories of modules, Part I”, Algebra Discrete Math., 15:2 (2013), 213–228 | MR | Zbl

[11] A. I. Kashu, “Closure operators in the categories of modules, Part II”, Algebra Discrete Math., 16:1 (2013), 81–95 | MR | Zbl

[12] A. I. Kashu, “Closure operators in the categories of modules, Part III”, Bulet. Acad. Şt. RM, Matematica, 2014, no. 1(74), 90–100 | MR | Zbl

[13] A. I. Kashu, “Closure operators in the categories of modules, Part IV”, Bulet. Acad. Şt. RM, Matematica, 2014, no. 3(76), 13–22 | MR | Zbl