On the Fitting ideals of a multiplication module
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 27-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we characterize all finitely generated multiplication $R$-modules whose the first nonzero Fitting ideal of them is contained in only finitely many maximal ideals. Also, we prove that a finitely generated multiplication $R$-module $M$ is faithful if and only if $M$ is a projective of constant rank one $R$-module.
Keywords: fitting ideals, projective of constant rank, faithful module.
Mots-clés : multiplication module
@article{ADM_2018_25_1_a2,
     author = {Somayeh Hadjirezaei and Somayeh Karimzadeh},
     title = {On the {Fitting} ideals of a multiplication module},
     journal = {Algebra and discrete mathematics},
     pages = {27--34},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a2/}
}
TY  - JOUR
AU  - Somayeh Hadjirezaei
AU  - Somayeh Karimzadeh
TI  - On the Fitting ideals of a multiplication module
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 27
EP  - 34
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a2/
LA  - en
ID  - ADM_2018_25_1_a2
ER  - 
%0 Journal Article
%A Somayeh Hadjirezaei
%A Somayeh Karimzadeh
%T On the Fitting ideals of a multiplication module
%J Algebra and discrete mathematics
%D 2018
%P 27-34
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a2/
%G en
%F ADM_2018_25_1_a2
Somayeh Hadjirezaei; Somayeh Karimzadeh. On the Fitting ideals of a multiplication module. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 27-34. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a2/

[1] A. Barnard, “Multiplication modules”, J. Algebra, 71 (1981), 174–178 | DOI | MR | Zbl

[2] D. A. Buchsbaum and D. Eisenbud, “What makes a complex exact”, J. Algebra, 25 (1973), 259–268 | DOI | MR | Zbl

[3] N. Bourbaki, Commutative Algebra, Springer-Verlag, 1989 | Zbl

[4] A. Campillo, T. S. Giralda, “Finitely generated projective modules and Fitting ideals”, Collect. Math., 30 (1979), 97–102 | MR | Zbl

[5] C. W. Choi, P. F. Smith, “On endomorphism of multiplication modules”, J. Korean Math. Soc., 31:1 (1994), 89–95 | MR | Zbl

[6] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1995 | MR | Zbl

[7] Z. A. El-Bast and P. F. Smith, “Multiplication modules”, Comm. Algebra, 16 (1988), 755–779 | DOI | MR | Zbl

[8] H. Fitting, “Die Determinantenideale eines Moduls”, Jahresbericht d. Deutschen Math.-Vereinigung, 46 (1936), 195–228

[9] S. Hadjirezaei, S. Hedayat, “On the first nonzero Fitting ideal of a module over a UFD”, Comm. Algebra, 41 (2013), 361–366 | DOI | MR | Zbl

[10] V. Kodiyalam, “Integrally closed modules over two-dimensional regular local ring”, Trans. Amer. Math. Soc., 347:9 (1995), 3551–3573 | DOI | MR | Zbl

[11] J.Lipman, “On the Jacobian ideal of the module of differentials”, Proc. Amer. Math. Soc., 21 (1969), 423–426 | DOI | MR

[12] J. Ohm, “On the first nonzero Fitting ideal of a module”, J. Algebra, 320 (2008), 417–425 | DOI | MR | Zbl

[13] R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, 2000 | MR | Zbl

[14] P. F. Smith, “Some remarks on multiplication modules”, Arch. Math., 50 (1988), 223–235 | DOI | MR | Zbl

[15] Y. Tiras, M. Alkan, “Prime modules and submodules”, Comm. Algebra, 31 (2003), 5253–5261 | DOI | MR | Zbl