Modules which have a rad-supplement that is a direct summand in every extension
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 157-164

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the concept of modules with the properties (RE) and (SRE), and we provide various properties of these modules. In particular, we prove that a semisimple module $M$ is $\operatorname{Rad}$-supplementing if and only if $M$ has the property (SRE). Moreover, we show that a ring $R$ is a left V-ring if and only if every left $R$-module with the property (RE) is injective. Finally, we characterize the rings whose modules have the properties (RE) and (SRE).
Keywords: $\operatorname{Rad}$-supplement, module with the properties (RE) and (SRE), artinian serial ring.
@article{ADM_2018_25_1_a12,
     author = {Burcu Ni\c{s}anc{\i} T\"urkmen and Erg\"ul T\"urkmen},
     title = {Modules which have a rad-supplement that is a direct summand in every extension},
     journal = {Algebra and discrete mathematics},
     pages = {157--164},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a12/}
}
TY  - JOUR
AU  - Burcu Nişancı Türkmen
AU  - Ergül Türkmen
TI  - Modules which have a rad-supplement that is a direct summand in every extension
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 157
EP  - 164
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a12/
LA  - en
ID  - ADM_2018_25_1_a12
ER  - 
%0 Journal Article
%A Burcu Nişancı Türkmen
%A Ergül Türkmen
%T Modules which have a rad-supplement that is a direct summand in every extension
%J Algebra and discrete mathematics
%D 2018
%P 157-164
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a12/
%G en
%F ADM_2018_25_1_a12
Burcu Nişancı Türkmen; Ergül Türkmen. Modules which have a rad-supplement that is a direct summand in every extension. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 157-164. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a12/