Modules which have a rad-supplement that is a direct summand in every extension
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 157-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce the concept of modules with the properties (RE) and (SRE), and we provide various properties of these modules. In particular, we prove that a semisimple module $M$ is $\operatorname{Rad}$-supplementing if and only if $M$ has the property (SRE). Moreover, we show that a ring $R$ is a left V-ring if and only if every left $R$-module with the property (RE) is injective. Finally, we characterize the rings whose modules have the properties (RE) and (SRE).
Keywords: $\operatorname{Rad}$-supplement, module with the properties (RE) and (SRE), artinian serial ring.
@article{ADM_2018_25_1_a12,
     author = {Burcu Ni\c{s}anc{\i} T\"urkmen and Erg\"ul T\"urkmen},
     title = {Modules which have a rad-supplement that is a direct summand in every extension},
     journal = {Algebra and discrete mathematics},
     pages = {157--164},
     year = {2018},
     volume = {25},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a12/}
}
TY  - JOUR
AU  - Burcu Nişancı Türkmen
AU  - Ergül Türkmen
TI  - Modules which have a rad-supplement that is a direct summand in every extension
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 157
EP  - 164
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a12/
LA  - en
ID  - ADM_2018_25_1_a12
ER  - 
%0 Journal Article
%A Burcu Nişancı Türkmen
%A Ergül Türkmen
%T Modules which have a rad-supplement that is a direct summand in every extension
%J Algebra and discrete mathematics
%D 2018
%P 157-164
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a12/
%G en
%F ADM_2018_25_1_a12
Burcu Nişancı Türkmen; Ergül Türkmen. Modules which have a rad-supplement that is a direct summand in every extension. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 157-164. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a12/

[1] E. Büyükaş{\i}k, C. Lomp, “Rings Whose Modules are Weakly Supplemented are Perfect. Application to Certain Ring Extension”, Math. Scand., 106 (2009), 25–30 | DOI | MR

[2] E. Büyükaş{\i}k, E. Mermut, S. Özdemir, “Rad-Supplemented Modules”, Rend. Semin. Mat. Univ. Padova, 124 (2010), 157–177 | DOI | MR | Zbl

[3] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006, 406 pp. | MR | Zbl

[4] F. Kasch, Modules and Rings, Academic Press Inc., 1982 | MR | Zbl

[5] D. Keskin, P. F. Smith, W. Xue, “Rings Whose Modules Are $\oplus $-Supplemented”, J. Algebra, 218 (1999), 161–169 | DOI | MR

[6] S. Özdemir, “Rad-Supplementing Modules”, Journal of the Korean Mathematical Society, 53:2 (2016), 403–414 | DOI | MR | Zbl

[7] B. N. Türkmen, “On Generalizations of Injective Modules”, Publications de L'Institut Mathematique, 99(113) (2016), 249–255 | DOI | MR | Zbl

[8] D. W. Sharpe, P. Vamos, Injective Modules, Cambridge University Press, 1972 | MR | Zbl

[9] E. Türkmen, “Rad-$\oplus$-Supplemented Modules”, Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica, 21:1 (2013), 225–238 | DOI | MR

[10] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl

[11] H. Zöschinger, “Komplementierte Moduln über Dedekindringen”, J. Algebra, 29 (1974), 42–56 | DOI | MR | Zbl

[12] Zöschinger H. \title Moduln, die in jeder Erweiterung ein Komplement haben, Math. Scand., 35 (1974), 267–287 | DOI | MR