Identities related to integer partitions and complete Bell polynomials
Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 158-168
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the (universal) Theorem for the integer partitions and the $q$-binomial Theorem, we give arithmetical and combinatorial identities for the complete Bell polynomials as generating functions for the number of partitions of a given integer into $k$ parts and the number of partitions of $n$ into a given number of parts.
Keywords:
complete Bell polynomials
Mots-clés : integer partitions, $q$-binomial Theorem.
Mots-clés : integer partitions, $q$-binomial Theorem.
@article{ADM_2017_24_1_a9,
author = {Miloud Mihoubi and Hac\`ene Belbachir},
title = {Identities related to integer partitions and complete {Bell} polynomials},
journal = {Algebra and discrete mathematics},
pages = {158--168},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a9/}
}
TY - JOUR AU - Miloud Mihoubi AU - Hacène Belbachir TI - Identities related to integer partitions and complete Bell polynomials JO - Algebra and discrete mathematics PY - 2017 SP - 158 EP - 168 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a9/ LA - en ID - ADM_2017_24_1_a9 ER -
Miloud Mihoubi; Hacène Belbachir. Identities related to integer partitions and complete Bell polynomials. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 158-168. http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a9/