Quantum Boolean algebras
Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 106-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce quantum Boolean algebras which are the analogue of the Weyl algebras for Boolean affine spaces. We study quantum Boolean algebras from the logical and the set theoretical viewpoints.
Keywords: Boolean algebras, Weyl algebras, quantum logic.
@article{ADM_2017_24_1_a7,
     author = {Rafael D{\'\i}az},
     title = {Quantum {Boolean} algebras},
     journal = {Algebra and discrete mathematics},
     pages = {106--143},
     year = {2017},
     volume = {24},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a7/}
}
TY  - JOUR
AU  - Rafael Díaz
TI  - Quantum Boolean algebras
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 106
EP  - 143
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a7/
LA  - en
ID  - ADM_2017_24_1_a7
ER  - 
%0 Journal Article
%A Rafael Díaz
%T Quantum Boolean algebras
%J Algebra and discrete mathematics
%D 2017
%P 106-143
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a7/
%G en
%F ADM_2017_24_1_a7
Rafael Díaz. Quantum Boolean algebras. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 106-143. http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a7/

[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, “Quantum Mechanics as a Deformation of Classical Mechanics”, Lett. Math. Phys., 1 (1977), 521–530 | DOI | MR

[2] F. Bergeron, G. Labelle, P. Leroux, Combinatorial Species and Tree-like Structures, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[3] G. Birkhoff, J. von Neumann, “The Logic of Quantum Mechanics”, Ann. Math., 37 (1936), 823–843 | DOI | MR

[4] J. Boardman, R. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math., 347, Springer-Verlag, Berlin, 1973 | DOI | MR | Zbl

[5] G. Boole, An Investigation of the Laws of Thought, Dover Publications, New York, 1958 | MR

[6] F. Brown, Boolean Reasoning, Dover Publications, New York, 2003 | MR | Zbl

[7] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1990 | MR

[8] A. Connes, C. Consani, M. Marcolli, “Fun with $F_1$”, J. Number Theory, 129 (2009), 1532–1561 | DOI | MR | Zbl

[9] A. Deitmar, “Schemes over F1”, Number Fields and Function Fields—Two Parallel Worlds, Progress in Mathematics, 239, eds. G. van der Geer, B. Moonen, R. Schoof, Birkhäuser, Basel, 2005, 87–100 | MR | Zbl

[10] R. Díaz, E. Pariguan, “Quantum Symmetric Functions”, Comm. Alg., 33 (2005), 1947–1978 | DOI | MR | Zbl

[11] R. Díaz, E. Pariguan, “Super, Quantum and Non-Commutative Species”, Afr. Diaspora J. Math., 8 (2009), 90–130 | MR | Zbl

[12] R. Díaz, M. Rivas, “Symmetric Boolean Algebras”, Acta Math. Univ. Comenianae, LXXIX (2010), 181–197 | MR

[13] V. Ginzburg, M. Kapranov, “Kozul duality for operads”, Duke Math. J., 76 (1994), 203–272 | DOI | MR | Zbl

[14] J. Harris, Algebraic Geometry, Springer-Verlag, Berlin, 1992 | MR | Zbl

[15] M. Markl, “Operads and PROPs”, Handbook of Algebra, 5, 2008, 87–140 | DOI | MR | Zbl

[16] M. Markl, S. Shnider, J. Stasheff, Operads in algebra, topology and physics, Math. Surveys and Monographs, 96, Amer. Math. Soc., Providence, 2002 | MR | Zbl

[17] I. Reed, “A class of multiple error-correcting codes and decoding scheme”, IRE Trans. Inf. Theory, 4 (1954), 38–49 | DOI | MR

[18] G.-C. Rota, Gian-Carlo Rota on Combinatorics, eds. J. Kung, Birkhäuser, Boston and Basel, 1995 | MR | Zbl

[19] I. Shafarevich, Basic Algebraic Geometry, v. 1, Springer-Verlag, Berlin, 1994 | MR

[20] M. Stone, “The Theory of Representations for Boolean Algebras”, Trans. Amer. Math. Soc., 40 (1936), 37–111 | MR

[21] C. Soulé, “Les variétés sur le corps à un élément”, Moscow Math. J., 4 (2004), 217–244 | MR | Zbl

[22] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, 1955 | MR | Zbl

[23] I. Zhegalkin, “On the Technique of Calculating Propositions in Symbolic Logic”, Mat. Sb., 43 (1927), 9–28