On divergence and sums of derivations
Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 99-105

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be an algebraically closed field of characteristic zero and $A$ a field of algebraic functions in $n$ variables over $\mathbb K$. (i.e. $A$ is a finite dimensional algebraic extension of the field $\mathbb K(x_1, \ldots, x_n)$ ). If $D$ is a $\mathbb K$-derivation of $A$, then its divergence $\operatorname{div} D$ is an important geometric characteristic of $D$ ($D$ can be considered as a vector field with coefficients in $A$). A relation between expressions of $\operatorname{div} D$ in different transcendence bases of $A$ is pointed out. It is also proved that every divergence-free derivation $D$ on the polynomial ring $\mathbb K[x, y, z]$ is a sum of at most two jacobian derivation.
Keywords: polynomial ring, derivation, jacobian derivation, transcendence basis.
Mots-clés : divergence
@article{ADM_2017_24_1_a6,
     author = {E. Chapovsky and O. Shevchyk},
     title = {On divergence and sums of derivations},
     journal = {Algebra and discrete mathematics},
     pages = {99--105},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a6/}
}
TY  - JOUR
AU  - E. Chapovsky
AU  - O. Shevchyk
TI  - On divergence and sums of derivations
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 99
EP  - 105
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a6/
LA  - en
ID  - ADM_2017_24_1_a6
ER  - 
%0 Journal Article
%A E. Chapovsky
%A O. Shevchyk
%T On divergence and sums of derivations
%J Algebra and discrete mathematics
%D 2017
%P 99-105
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a6/
%G en
%F ADM_2017_24_1_a6
E. Chapovsky; O. Shevchyk. On divergence and sums of derivations. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 99-105. http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a6/