$(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras
Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 46-70

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of $(G,\phi)$-crossed product and quasicrossed system are introduced in the setting of $(G,\phi)$-quasiassociative algebras, i.e., algebras endowed with a grading by a group $G$, satisfying a “quasiassociative” law. It is presented two equivalence relations, one for quasicrossed systems and another for $(G,\phi)$-crossed products. Also the notion of graded-bimodule in order to study simple $(G,\phi)$-crossed products is studied.
Keywords: graded quasialgebras, quasicrossed product, twisted group algebras.
Mots-clés : group algebras
@article{ADM_2017_24_1_a3,
     author = {Helena Albuquerque and Elisabete Barreiro and Jos\'e M. S\'anchez-Delgado},
     title = {$(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras},
     journal = {Algebra and discrete mathematics},
     pages = {46--70},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a3/}
}
TY  - JOUR
AU  - Helena Albuquerque
AU  - Elisabete Barreiro
AU  - José M. Sánchez-Delgado
TI  - $(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 46
EP  - 70
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a3/
LA  - en
ID  - ADM_2017_24_1_a3
ER  - 
%0 Journal Article
%A Helena Albuquerque
%A Elisabete Barreiro
%A José M. Sánchez-Delgado
%T $(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras
%J Algebra and discrete mathematics
%D 2017
%P 46-70
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a3/
%G en
%F ADM_2017_24_1_a3
Helena Albuquerque; Elisabete Barreiro; José M. Sánchez-Delgado. $(G,\phi)$-crossed product on~$(G,\phi)$-quasiassociative algebras. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 46-70. http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a3/