Jacobsthal-Lucas series and their applications
Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 169-180

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the properties of positive series such that its terms are reciprocals of the elements of Jacobsthal-Lucas sequence ($J_{n+2}=2J_{n+1}+J_n$, $J_1=2$, $J_2=1$). In particular, we consider the properties of the set of incomplete sums as well as their applications. We prove that the set of incomplete sums of this series is a nowhere dense set of positive Lebesgue measure. Also we study singular random variables of Cantor type related to Jacobsthal-Lucas sequence.
Keywords: Jacobsthal-Lucas sequence, the set of incomplete sums, singular random variable
Mots-clés : Hausdorff-Besicovitch dimension.
@article{ADM_2017_24_1_a10,
     author = {Mykola Pratsiovytyi and Dmitriy Karvatsky},
     title = {Jacobsthal-Lucas series and their applications},
     journal = {Algebra and discrete mathematics},
     pages = {169--180},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a10/}
}
TY  - JOUR
AU  - Mykola Pratsiovytyi
AU  - Dmitriy Karvatsky
TI  - Jacobsthal-Lucas series and their applications
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 169
EP  - 180
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a10/
LA  - en
ID  - ADM_2017_24_1_a10
ER  - 
%0 Journal Article
%A Mykola Pratsiovytyi
%A Dmitriy Karvatsky
%T Jacobsthal-Lucas series and their applications
%J Algebra and discrete mathematics
%D 2017
%P 169-180
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a10/
%G en
%F ADM_2017_24_1_a10
Mykola Pratsiovytyi; Dmitriy Karvatsky. Jacobsthal-Lucas series and their applications. Algebra and discrete mathematics, Tome 24 (2017) no. 1, pp. 169-180. http://geodesic.mathdoc.fr/item/ADM_2017_24_1_a10/