Algebras and logics of partial quasiary predicates
Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 263-278.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we investigate algebras and logics defined for classes of partial quasiary predicates. Informally speaking, such predicates are partial predicates defined over partial states (partial assignments) of variables. Conventional $n$-ary predicates can be considered as a special case of quasiary predicates. The notion of quasiary predicate, as well as the notion of quasiary function, is used in computer science to represent semantics of computer programs and their components. We define extended first-order algebras of partial quasiary predicates and investigate their properties. Based on such algebras we define a logic with irrefutability consequence relation. A sequent calculus is constructed for this logic, its soundness and completeness are proved.
Keywords: partial predicate, quasiary predicate, predicate algebra, predicate logic, soundness, completeness.
@article{ADM_2017_23_2_a8,
     author = {Mykola Nikitchenko and Stepan Shkilniak},
     title = {Algebras and logics of partial quasiary predicates},
     journal = {Algebra and discrete mathematics},
     pages = {263--278},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a8/}
}
TY  - JOUR
AU  - Mykola Nikitchenko
AU  - Stepan Shkilniak
TI  - Algebras and logics of partial quasiary predicates
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 263
EP  - 278
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a8/
LA  - en
ID  - ADM_2017_23_2_a8
ER  - 
%0 Journal Article
%A Mykola Nikitchenko
%A Stepan Shkilniak
%T Algebras and logics of partial quasiary predicates
%J Algebra and discrete mathematics
%D 2017
%P 263-278
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a8/
%G en
%F ADM_2017_23_2_a8
Mykola Nikitchenko; Stepan Shkilniak. Algebras and logics of partial quasiary predicates. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 263-278. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a8/

[1] Handbook of Logic in Computer Science, in 5 volumes, eds. S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Oxford Univ. Press, Oxford, 1993–2001 | MR

[2] M. Nikitchenko, V. Tymofieiev, “Satisfiability in Composition-Nominative Logics”, Central European Journal of Computer Science, 2:3 (2012), 194–213 | MR | Zbl

[3] M. Nikitchenko, S. Shkilnyak, Applied Logic, Publishing house of Taras Shevchenko National University of Kyiv, Kyiv, 2013, 278 pp. (Ukrainian)

[4] E. Bencivenga, “Free Logics”, Handbook of Philosophical Logic, v. III, Alternatives to Classical Logic, eds. D. Gabbay and F. Guenthner, D. Reidel, Dordrecht, 1986, 373–426 | MR | Zbl

[5] J. Gallier, Logic for computer science: foundations of automatic theorem proving, 2nd ed., Dover, New York, 2015

[6] S. S. Shkilniak, “First-order logics of quasiary predicates”, Kibernetika i Sistemnyi Analiz, 6 (2010), 32–50 (Russian) | MR | Zbl

[7] A. Kryvolap, M. Nikitchenko, W. Schreiner, “Extending Floyd-Hoare logic for partial pre- and postconditions”, CCIS, 412, Springer, Heidelberg, 2013, 355–378