Finite groups admitting a dihedral group of automorphisms
Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 223-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D=\langle \alpha, \beta \rangle$ be a dihedral group generated by the involutions $\alpha$ and $\beta$ and let $F=\langle \alpha \beta \rangle$. Suppose that $D$ acts on a finite group $G$ by automorphisms in such a way that $C_G(F)=1$. In the present paper we prove that the nilpotent length of the group $G$ is equal to the maximum of the nilpotent lengths of the subgroups $C_G(\alpha)$ and $C_G(\beta)$.
Keywords: dihedral group, fixed points, nilpotent length.
@article{ADM_2017_23_2_a4,
     author = {G\"ulin Ercan and \.Ismail \c{S}. G\"ulo\u{g}lu},
     title = {Finite groups admitting a dihedral group of automorphisms},
     journal = {Algebra and discrete mathematics},
     pages = {223--229},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a4/}
}
TY  - JOUR
AU  - Gülin Ercan
AU  - İsmail Ş. Güloğlu
TI  - Finite groups admitting a dihedral group of automorphisms
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 223
EP  - 229
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a4/
LA  - en
ID  - ADM_2017_23_2_a4
ER  - 
%0 Journal Article
%A Gülin Ercan
%A İsmail Ş. Güloğlu
%T Finite groups admitting a dihedral group of automorphisms
%J Algebra and discrete mathematics
%D 2017
%P 223-229
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a4/
%G en
%F ADM_2017_23_2_a4
Gülin Ercan; İsmail Ş. Güloğlu. Finite groups admitting a dihedral group of automorphisms. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 223-229. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a4/

[1] Algebra Logic, 35 (1996), 217–228 | DOI | MR | Zbl

[2] E. de Melo, “Fitting height of a finite group with a metabelian group of automorphisms”, Comm. Algebra, 43:11 (2015), 4797–4808 | DOI | MR | Zbl

[3] G. Ercan and .{I}. Ş. Güloğlu, “Action of a Frobenius-like group with fixed-point-free kernel”, J. Group Theory, 17:5 (2014), 863—873 | MR | Zbl

[4] G. Ercan, .{I}. Ş. Güloğlu, and E. I. Khukhro, “Rank and Order of a Finite Group admitting a Frobenius-like Group of Automorphisms”, Algebra and Logic, 53:3 (2014), 258–265 | DOI | MR | Zbl

[5] G. Ercan, .{I}. Ş. Güloğlu, and E. I. Khukhro, “Derived length of a Frobenius-like Kernel”, J. Algebra, 412 (2014), 179—188 | DOI | MR | Zbl

[6] G. Ercan, .{I}. Ş. Güloğlu, and E. I. Khukhro, “Frobenius-like groups as groups of automorphisms”, Turkish J. Math., 38:6 (2014), 965–976 | DOI | MR | Zbl

[7] G. Ercan, .{I}. Ş. Güloğlu, and E. Öğüt, “Nilpotent length of a Finite Solvable Group with a coprime Frobenius Group of Automorphisms”, Comm. Algebra, 42:11 (2014), 4751–4756 | DOI | MR | Zbl

[8] .{I}. Ş. Güloğlu and G. Ercan, “Action of a Frobenius-like group”, J. Algebra, 402 (2014), 533–543 | DOI | MR | Zbl

[9] I. M. Isaacs, “Fixed points and characters in groups with non-coprime operator groups”, Canad. J. Math., 20 (1968), 1315–1320 | DOI | MR | Zbl

[10] E. I. Khukhro, “Fitting height of a finite group with a Frobenius group of automorphisms”, J. Algebra, 366 (2012), 1–11 | DOI | MR | Zbl

[11] Algebra Logic, 52 (2013), 72–78 | DOI | MR | Zbl

[12] E. I. Khukhro and N. Yu. Makarenko, “Finite groups and Lie rings with a metacyclic Frobenius group of automorphisms”, J. Algebra, 386 (2013), 77–104 | DOI | MR | Zbl

[13] E. I. Khukhro and N. Yu. Makarenko, “Finite $p$-groups admitting a Frobenius groups of automorphisms with kernel a cyclic $p$-group”, Proc. Amer. Math. Soc., 143:5 (2015), 1837–1848 | DOI | MR | Zbl

[14] E. I. Khukhro, N. Y. Makarenko, and P. Shumyatsky, “Frobenius groups of automorphisms and their fixed points”, Forum Math., 26 (2014), 73–112 | DOI | MR | Zbl

[15] N. Y. Makarenko and P. Shumyatsky, “Frobenius groups as groups of automorphisms”, Proc. Amer. Math. Soc., 138 (2010), 3425–3436 | DOI | MR | Zbl

[16] P. Shumyatsky, “The dihedral group as a group of automorphisms”, J. Algebra, 375 (2013), 1—12 | DOI | MR | Zbl

[17] A. Turull, “Fitting Height of Groups and of Fixed Points”, J. Algebra, 86 (1984), 555–556 | DOI | MR