Mots-clés : cycles.
@article{ADM_2017_23_1_a7,
author = {Rafael Stekolshchik},
title = {Equivalence of {Carter} diagrams},
journal = {Algebra and discrete mathematics},
pages = {138--179},
year = {2017},
volume = {23},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a7/}
}
Rafael Stekolshchik. Equivalence of Carter diagrams. Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 138-179. http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a7/
[1] R. W. Carter, “Conjugacy classes in the Weyl group”, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Springer, Berlin, 1970, 297–318 | DOI | MR
[2] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25 (1972), 1–59 | MR | Zbl
[3] R. W. Carter, G. B. Elkington, “A Note on the Parametrization of Conjugacy Classes”, J. Algebra, 20 (1972), 350–354 | DOI | MR | Zbl
[4] V. Kac, “Infinite root systems, representations of graphs and invariant theory”, Invent. Math., 56:1 (1980), 57–92 | DOI | MR | Zbl
[5] D. Madore, The $E_8$ root system, 2010 http://www.madore.org/<nobr>$\sim$</nobr>david/math/e8rotate.html
[6] R. Stekolshchik, Notes on Coxeter Transformations and the McKay Correspondence, Springer Monographs in Mathematics, Springer, 2008, XX+240 pp. | MR | Zbl
[7] R. Stekolshchik, Root systems and diagram calculus. I. Regular extensions of Carter diagrams and the uniqueness of conjugacy classes, arXiv: 1005.2769v6
[8] J. Stembridge, Coxeter Planes, 2007 http://www.math.lsa.umich.edu/<nobr>$\sim$</nobr>jrs/coxplane.html