Equivalence of Carter diagrams
Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 138-179
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce the equivalence relation $\rho$ on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing $l$-cycles with $l > 4$ to an equivalent Carter diagram containing only $4$-cycles. Transforming one Carter diagram $\Gamma_1$ to another Carter diagram $\Gamma_2$ we can get a certain intermediate diagram $\Gamma'$ which is not necessarily a Carter diagram. Such an intermediate diagram is called a connection diagram. The relation $\rho$ is the equivalence relation on the set of Carter diagrams and connection diagrams. The properties of connection and Carter diagrams are studied in this paper. The paper contains an alternative proof of Carter's classification of admissible diagrams.
Keywords:
Dynkin diagrams, Carter diagrams, Weyl group
Mots-clés : cycles.
Mots-clés : cycles.
@article{ADM_2017_23_1_a7,
author = {Rafael Stekolshchik},
title = {Equivalence of {Carter} diagrams},
journal = {Algebra and discrete mathematics},
pages = {138--179},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a7/}
}
Rafael Stekolshchik. Equivalence of Carter diagrams. Algebra and discrete mathematics, Tome 23 (2017) no. 1, pp. 138-179. http://geodesic.mathdoc.fr/item/ADM_2017_23_1_a7/