A~horizontal mesh algorithm for posets with~positive Tits form
Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 240-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

Following our paper [Fund. Inform. 136 (2015), 345–379], we define a horizontal mesh algorithm that constructs a $\widehat{\Phi}_I$-mesh translation quiver $\Gamma(\widehat{\mathcal{R}}_I,\widehat{\Phi}_I)$ consisting of $\widehat{\Phi}_I$-orbits of the finite set $\widehat{\mathcal{R}}_I=\{v\in\mathbb{Z}^I\; ;\;\widehat{q}_I(v)=1\}$ of Tits roots of a poset $I$ with positive definite Tits quadratic form $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$. Under the assumption that $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$ is positive definite, the algorithm constructs $\Gamma(\widehat{\mathcal{R}}_I,\widehat{\Phi}_I)$ such that it is isomorphic with the $\widehat{\Phi}_D$-mesh translation quiver $\Gamma({\mathcal{R}}_D,{\Phi}_D)$ of $\widehat{\Phi}_D$-orbits of the finite set ${\mathcal{R}}_D$ of roots of a simply laced Dynkin quiver $D$ associated with $I$.
Keywords: poset, combinatorial algorithm, Dynkin diagram, mesh geometry of roots, quadratic form.
@article{ADM_2016_22_2_a6,
     author = {Mariusz Kaniecki and Justyna Kosakowska and Piotr Malicki and Grzegorz Marczak},
     title = {A~horizontal mesh algorithm for posets with~positive {Tits} form},
     journal = {Algebra and discrete mathematics},
     pages = {240--261},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a6/}
}
TY  - JOUR
AU  - Mariusz Kaniecki
AU  - Justyna Kosakowska
AU  - Piotr Malicki
AU  - Grzegorz Marczak
TI  - A~horizontal mesh algorithm for posets with~positive Tits form
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 240
EP  - 261
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a6/
LA  - en
ID  - ADM_2016_22_2_a6
ER  - 
%0 Journal Article
%A Mariusz Kaniecki
%A Justyna Kosakowska
%A Piotr Malicki
%A Grzegorz Marczak
%T A~horizontal mesh algorithm for posets with~positive Tits form
%J Algebra and discrete mathematics
%D 2016
%P 240-261
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a6/
%G en
%F ADM_2016_22_2_a6
Mariusz Kaniecki; Justyna Kosakowska; Piotr Malicki; Grzegorz Marczak. A~horizontal mesh algorithm for posets with~positive Tits form. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 240-261. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a6/

[1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, v. 1, London Math. Soc. Student Texts, 65, Techniques of Representation Theory, Cambridge Univ. Press, Cambridge–New York, 2006 | Zbl

[2] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge Univ. Press, 1995 | MR | Zbl

[3] M. Barot, “A characterization of positive unit forms II”, Bol. Soc. Mat. Mexicana (3), 7 (2001), 13–22 | MR | Zbl

[4] M. Barot, D. Kussin and H. Lenzing, “The Lie algebra associated to a unit form”, J. Algebra, 296 (2007), 1–17 | DOI | MR

[5] V. M. Bondarenko and M. V. Stepochkina, “On posets of width two with positive Tits form”, Algebra and Discrete Math., 2005, no. 2, 20–35 | MR | Zbl

[6] V. M. Bondarenko and M. V. Stepochkina, “(Min, max)-equivalence of partially ordered sets and quadratic Tits form”, Zb. Pr. Inst. Mat. NAN Ukr., 2:3 (2005), 18–58 (Russian, English Summary) | Zbl

[7] K. Bongartz, “A criterion for finite representation type”, Math. Ann., 269 (1984), 1–12 | DOI | MR | Zbl

[8] S. Brenner, “Unfoldings of algebras”, Proc. London Math. Soc. (3), 62 (1991), 242–274 | DOI | MR | Zbl

[9] J. A. Drozd, “Coxeter transformations and representations of partially ordered sets”, Funct. Anal. Appl., 8 (1974), 219–225 | DOI | MR | Zbl

[10] Representations of Finite Dimensional Algebras, Encyclopaedia of Math. Sci., 73, Springer-Verlag, 1997, 177 pp.

[11] M. Ga̧siorek and D. Simson, “One-peak posets with positive Tits quadratic form, their mesh quivers of roots, and programming in Maple and Python”, Linear Algebra Appl., 436 (2012), 2240–2272 | DOI | MR

[12] M. Ga̧siorek and D. Simson, “A computation of positive one-peak posets that are Tits sincere”, Colloq. Math., 127 (2012), 83–103 | DOI | MR

[13] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York–Heilderberg–Berlin, 1972 | MR | Zbl

[14] M. Kaniecki, J. Kosakowska, P. Malicki and G. Marczak, “A horizontal mesh algorithm for a class of edge-bipartite graphs and their matrix morsifications”, Fund. Inform., 136 (2015), 345–379 | MR | Zbl

[15] S. Kasjan and J. A. de la Peña, “Constructing the preprojective components of an algebra”, J. Algebra, 179 (1996), 793–807 | DOI | MR | Zbl

[16] S. Kasjan and D. Simson, “Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, I. Mesh root systems”, Fundam. Inform., 139:2 (2015), 153–184 | DOI | MR | Zbl

[17] J. Kosakowska, “A classification of two-peak sincere posets of finite prinjective type and their sincere prinjective representations”, Colloq. Math., 87 (2001), 27–77 | DOI | MR | Zbl

[18] J. Kosakowska, “A specialization of prinjective Ringel-Hall algebra and the associated Lie algebra”, Acta Mathematica Sinica, English Series, 24 (2008), 1687–1702 | DOI | MR | Zbl

[19] J. Kosakowska, “Lie algebras associated with quadratic forms and their applications to Ringel-Hall algebras”, Algebra and Discrete Math., 2008, no. 4, 49–79 | MR | Zbl

[20] J. Kosakowska, “Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms”, Fund. Inform., 119 (2012), 149–162 | MR | Zbl

[21] J. Kosakowska and D. Simson, “On Tits form and prinjective representations of posets of finite prinjective type”, Comm. Algebra, 26 (1998), 1613–1623 | DOI | MR | Zbl

[22] J. Soviet Math., 3:5 (1975), 585–606 | DOI | MR | Zbl

[23] J. A. de la Peña and D. Simson, “Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences”, Trans. Amer. Math. Soc., 329 (1992), 733–753 | DOI | MR | Zbl

[24] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1099, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1984 | DOI | MR | Zbl

[25] M. Sato, “Periodic Coxeter matrices and their associated quadratic forms”, Linear Algebra Appl., 406 (2005), 99–108 | DOI | MR | Zbl

[26] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl., 4, Gordon Breach, London, 1992 | MR | Zbl

[27] D. Simson, “Posets of finite prinjective type and a class of orders”, J. Pure Appl. Algebra, 90 (1993), 71–103 | DOI | MR

[28] D. Simson, “Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories”, Colloq. Math., 115 (2009), 259–295 | DOI | MR | Zbl

[29] D. Simson, “Integral bilinear forms, Coxeter transformations and Coxeter polynomials of finite posets”, Linear Algebra Appl., 433 (2010), 699–717 | DOI | MR | Zbl

[30] D. Simson, “Mesh geometries of root orbits of integral quadratic forms”, J. Pure Appl. Algebra, 215 (2011), 13–34 | DOI | MR | Zbl

[31] D. Simson, “Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots”, Fund. Inform., 109 (2011), 425–462 | MR | Zbl

[32] D. Simson, “A Coxeter-Gram classification of positive simply laced edge-bipartite graphs”, SIAM J. Discrete Math., 27 (2013), 827–854 | DOI | MR | Zbl

[33] D. Simson, “A framework for Coxeter spectral analysis of edge-bipartite graphs, their rational morsifications and mesh geometries of root orbits”, Fund. Inform., 124 (2013), 309–338 | MR | Zbl

[34] D. Simson and K. Zając, “A framework for Coxeter spectral classification of finite posets and their mesh geometries of roots”, Intern. J. Math. Mathematical Sciences, 2013, 743734, 22 pp. | DOI | MR | Zbl