Factorization of elements in~noncommutative~rings,~I
Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 209-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the classical theory of factorization in noncommutative integral domains to the more general classes of right saturated rings and right cyclically complete rings. Our attention is focused, in particular, on the factorizations of right regular elements into left irreducible elements. We study the connections among such factorizations, right similar elements, cyclically presented modules of Euler characteristic $0$ and their series of submodules. Finally, we consider factorizations as a product of idempotents.
Keywords: divisibility, factorization, right irreducible element.
@article{ADM_2016_22_2_a4,
     author = {Alberto Facchini and Martino Fassina},
     title = {Factorization of elements {in~noncommutative~rings,~I}},
     journal = {Algebra and discrete mathematics},
     pages = {209--232},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a4/}
}
TY  - JOUR
AU  - Alberto Facchini
AU  - Martino Fassina
TI  - Factorization of elements in~noncommutative~rings,~I
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 209
EP  - 232
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a4/
LA  - en
ID  - ADM_2016_22_2_a4
ER  - 
%0 Journal Article
%A Alberto Facchini
%A Martino Fassina
%T Factorization of elements in~noncommutative~rings,~I
%J Algebra and discrete mathematics
%D 2016
%P 209-232
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a4/
%G en
%F ADM_2016_22_2_a4
Alberto Facchini; Martino Fassina. Factorization of elements in~noncommutative~rings,~I. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 209-232. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a4/

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, GTM, 13, Second Edition, Springer-Verlag, New York, 1992 | MR | Zbl

[2] M. Auslander, “Almost split sequences, I”, Paper No. 1, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Carleton Math. Lecture Notes, 9, Carleton Univ., Ottawa, Ont., 1974, 8 pp. | MR

[3] M. Auslander and I. Reiten, “Almost split sequences, II”, Paper No. 2, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Carleton Math. Lecture Notes, 9, Carleton Univ., Ottawa, Ont., 1974, 13 pp. | MR

[4] H. Bass, “$K$-theory and stable algebra”, Publ. Math. I.H.E.S., 22 (1964), 5–60 | DOI | MR

[5] P. M. Cohn, “Noncommutative unique factorization domains”, Trans. Amer. Math. Soc., 109 (1963), 313–331 | DOI | MR

[6] P. M. Cohn, “Unique factorization domains”, Amer. Math. Monthly, 80 (1973), 1–18 | DOI | MR | Zbl

[7] P. M. Cohn, Free rings and their relations, London Math. Soc. Monographs, 19, Second Edition, Academic Press, London–New York, 1985 | MR | Zbl

[8] P. M. Cohn, Free ideal rings and localization in general rings, New Mathematical Monographs, 3, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[9] J. A. Erdos, “On products of idempotent matrices”, Glasg. Math. J., 8 (1967), 118–122 | DOI | MR | Zbl

[10] E. G. Evans, Jr., “Krull-Schmidt and cancellation over local rings”, Pacific J. Math., 46 (1973), 115–121 | DOI | MR | Zbl

[11] A. Facchini, Module Theory. Endomorphism rings and direct sum decompositions in some classes of modules, Progress in Mathematics, 167, Birkäuser Verlag, Basel, 1998 ; Reprinted in Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2010 | DOI | MR | Zbl | Zbl

[12] A. Facchini and A. Leroy, “Elementary matrices and products of idempotents”, Linear Multilinear Algebra, 64 (2016), 1916–1935 | DOI | MR | Zbl

[13] J. Fountain, “Products of idempotent integer matrices”, Math. Cambridge Philos. Soc., 110 (1991), 431–441 | DOI | MR | Zbl

[14] K. Goodearl, Ring theory. Nonsingular rings and modules, Marcel Dekker, Inc., New York–Basel, 1976 | MR | Zbl

[15] K. R. Goodearl, von Neumann regular rings, Second edition, Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991 | MR

[16] N. Jacobson, The Theory of Rings, Amer. Mat. Soc., New York, 1943 | MR | Zbl

[17] T. J. Laffey, “Products of idempotent matrices”, Linear and Multilinear Algebra, 14 (1983), 309–314 | DOI | MR | Zbl

[18] G. Lamé, Demonstration generale du Theoreme de Fermat, sur l'impossibilite, en nombres entier, de l'equation $x^n+y^n=z^n$, Compte rendue des Séances de L'Académie des Sciences, Séance du lundi $1^{er}$ mars 1847

[19] W. Ruitenburg, “Products of idempotent matrices over Hermite domains”, Semigroup Forum, 46 (1993), 371–378 | DOI | MR | Zbl

[20] D. W. Sharpe and P. Vámos, Injective modules, Cambridge Univ. Press, Cambridge, 1972 | MR | Zbl

[21] B. Stenström, Rings of quotients, Springer-Verlag, New York–Heidelberg, 1975 | Zbl