Rad-supplements in injective modules
Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 171-183

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study the notion of $\mathrm{Rad}$-s-injective modules (i.e. modules which are $\mathrm{Rad}$-supplements in their injective hulls). We compare this notion with another generalization of injective modules. We show that the class of $\mathrm{Rad}$-s-injective modules is closed under finite direct sums. We characterize $\mathrm{Rad}$-s-injective modules over several type of rings, including semilocal rings, left hereditary rings and left Harada rings.
Keywords: almost injective modules, $\mathrm{Rad}$-supplement submodules.
Mots-clés : $\mathrm{Rad}$-s-injective modules, injective modules
@article{ADM_2016_22_2_a1,
     author = {Engin B\"uy\"uka\c{s}ik and Rachid Tribak},
     title = {Rad-supplements in injective modules},
     journal = {Algebra and discrete mathematics},
     pages = {171--183},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a1/}
}
TY  - JOUR
AU  - Engin Büyükaşik
AU  - Rachid Tribak
TI  - Rad-supplements in injective modules
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 171
EP  - 183
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a1/
LA  - en
ID  - ADM_2016_22_2_a1
ER  - 
%0 Journal Article
%A Engin Büyükaşik
%A Rachid Tribak
%T Rad-supplements in injective modules
%J Algebra and discrete mathematics
%D 2016
%P 171-183
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a1/
%G en
%F ADM_2016_22_2_a1
Engin Büyükaşik; Rachid Tribak. Rad-supplements in injective modules. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 171-183. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a1/