Rad-supplements in injective modules
Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 171-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study the notion of $\mathrm{Rad}$-s-injective modules (i.e. modules which are $\mathrm{Rad}$-supplements in their injective hulls). We compare this notion with another generalization of injective modules. We show that the class of $\mathrm{Rad}$-s-injective modules is closed under finite direct sums. We characterize $\mathrm{Rad}$-s-injective modules over several type of rings, including semilocal rings, left hereditary rings and left Harada rings.
Keywords: almost injective modules, $\mathrm{Rad}$-supplement submodules.
Mots-clés : $\mathrm{Rad}$-s-injective modules, injective modules
@article{ADM_2016_22_2_a1,
     author = {Engin B\"uy\"uka\c{s}ik and Rachid Tribak},
     title = {Rad-supplements in injective modules},
     journal = {Algebra and discrete mathematics},
     pages = {171--183},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a1/}
}
TY  - JOUR
AU  - Engin Büyükaşik
AU  - Rachid Tribak
TI  - Rad-supplements in injective modules
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 171
EP  - 183
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a1/
LA  - en
ID  - ADM_2016_22_2_a1
ER  - 
%0 Journal Article
%A Engin Büyükaşik
%A Rachid Tribak
%T Rad-supplements in injective modules
%J Algebra and discrete mathematics
%D 2016
%P 171-183
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a1/
%G en
%F ADM_2016_22_2_a1
Engin Büyükaşik; Rachid Tribak. Rad-supplements in injective modules. Algebra and discrete mathematics, Tome 22 (2016) no. 2, pp. 171-183. http://geodesic.mathdoc.fr/item/ADM_2016_22_2_a1/

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate texts in mathematics, 13, Springer-Verlag, New York, 1992 | DOI | MR | Zbl

[2] E. Büyükaş{\i}k, E. Mermut and S. Özdemir, “Rad-supplemented modules”, Rend. Semin. Mat. Univ. Padova, 124 (2010), 157–177 | DOI | MR | Zbl

[3] E. Büyükaş{\i}k and C. Lomp, “On a recent generalization of semiperfect rings”, Bull. Aust. Math. Soc., 78:2 (2008), 317–325 | DOI | MR | Zbl

[4] J. Clark, D. K. Tütüncü and R. Tribak, “Supplement submodules of injective modules”, Comm. Algebra, 39:11 (2011), 4390–4402 | DOI | MR | Zbl

[5] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006 | MR | Zbl

[6] Ş. Ecevit, M. T. Koşan and R. Tribak, “Rad-$\oplus$-supplemented modules and cofinitely Rad-$\oplus$-supplemented modules”, Algebra Colloq., 19:4 (2012), 637–648 | DOI | MR | Zbl

[7] L. Fuchs and L. Salce, Modules over non-Noetherian domains, Mathematical surveys and monographs, 84, American Mathematical Society, 2001 | MR | Zbl

[8] M. Harada, “On small submodules in the total quotient ring of a commutative ring”, Rev. Un. Mat. Argentina, 28 (1977), 99–102 | MR | Zbl

[9] M. Harada, “A note on hollow modules”, Rev. Un. Mat. Argentina, 28 (1978), 186–194 | MR | Zbl

[10] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1998 | MR

[11] B. L. Osofsky, “Rings all of whose finitely generated modules are injective”, Pacific J. Math., 14 (1964), 645–650 | DOI | MR | Zbl

[12] D. W. Sharpe and P. Vámos, Injective Modules, Cambridge University Press, 1972 | MR | Zbl

[13] H. H. Storrer, “On Goldman's primary decomposition”, Lectures on Rings and Modules, Lecture Notes in Math., 246, 1972, 617–661 | DOI | MR | Zbl

[14] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl