Amply (weakly) Goldie-Rad-supplemented~modules
Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 94-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring and $M$ be a right $R$-module. We say a submodule $S$ of $M$ is a (weak) Goldie-Rad-supplement of a submodule $N$ in $M$, if $M=N+S$, $(N\cap S \leq Rad(M))$ $N\cap S\leq Rad(S)$ and $N\beta^{**} S$, and $M$ is called amply (weakly) Goldie-Rad-supplemented if every submodule of $M$ has ample (weak) Goldie-Rad-supplements in $M$. In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if $M$ is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then $M$ is Artinian.
Keywords: supplement submodule, Goldie-Rad-Supplement submodule, amply Goldie-Rad-Supplemented module.
@article{ADM_2016_22_1_a5,
     author = {Figen Tak{\i}l Mutlu},
     title = {Amply (weakly) {Goldie-Rad-supplemented~modules}},
     journal = {Algebra and discrete mathematics},
     pages = {94--101},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a5/}
}
TY  - JOUR
AU  - Figen Takıl Mutlu
TI  - Amply (weakly) Goldie-Rad-supplemented~modules
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 94
EP  - 101
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a5/
LA  - en
ID  - ADM_2016_22_1_a5
ER  - 
%0 Journal Article
%A Figen Takıl Mutlu
%T Amply (weakly) Goldie-Rad-supplemented~modules
%J Algebra and discrete mathematics
%D 2016
%P 94-101
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a5/
%G en
%F ADM_2016_22_1_a5
Figen Takıl Mutlu. Amply (weakly) Goldie-Rad-supplemented~modules. Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 94-101. http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a5/

[1] I. Al-Khazzi and P. F. Smith, “Modules with Chain Conditions on Superfluous Submodules”, Comm. Algebra, 19 (1991), 2331–2351 | DOI | MR | Zbl

[2] G. F. Birkenmeier, F. Takıl Mutlu, C. Nebiyev, N. Sokmez and A. Tercan, “Goldie *-Supplemented Modules”, Glasgow Math. J., 52A (2010), 41–52 | DOI | MR | Zbl

[3] S. H. Mohamed and B. J. Muller, “Continuous and discrete modules”, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[4] Y. Talebi, A. R. M. Hamzekolaee and A. Tercan, “Goldie-Rad-Supplemented Modules”, An. Ştiint. Univ. “Ovidius” Constanta Ser. Mat., 22:3 (2014), 205–218 | MR | Zbl

[5] Y. Wang and N. Ding, “Generalized Supplemented Modules”, Taiwanese J. Math., 10:6 (2006), 1589–1601 | MR | Zbl

[6] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl